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Abstract This paper investigates a search game of a searcher and a target. At the beginning of the 
search, the target selects his path from some options and the searcher determines the distribution of his 
available search resources into a search space which consists of discrete cells and discrete time points. The 
searcher gains a value on detection of the target while he expends the search cost depending on the allocation 
of the search resource. The payoff of the search is the expected reward which is defined as the expected 
value minus the expected search cost. The searcher wants to maximize the expected reward and the target 
wants to minimize it. We formulate the problem as a two-person zero-sum game and reduce it to a concave 
maximization problem. We propose a computational method to obtain an optimal solution of the game. Our 
method proceeds in such a way that one-sided problems generated from the original game are repeatedly 
solved and their solutions converge asymptotically to an optimal solution of the game. By some examples, 
we examine the effect of parameters included in the problem upon an optimal solution to elucidate some 
characteristics of the solution and the computational time of the proposed method. 

1. Introduction 
This paper deals with a two-person zero-sum game of a searcher and a mobile target, in which 
the target is free to select a path among some options and the searcher distributes search 
resources over a search space in order to detect the target. A number of papers have been 
published so far on the subject of the search for a moving target. As an early study in 1970, 
Pollock[14] investigated a search for a moving target on among two regions in a Markovian 
fashion. In the studies on the optimal search for a moving target, some varieties of moving 
patterns of the target are considered, for example, a Markovian process[14, 15, 1, 181, a 
diffusion process[4], a type of selecting a path from some options[7, 3, 8, 61, a so-called 
conditionally deterministic motion[16] and so on[17]. 

Most of papers cited above deal with a one-sided optimizing problem for the searcher. 
There are some papers in which not only the searcher strategy but also the target strategy is 
taken as the decision elements. Danskin[2] gives a saddle point between the concrete search 
pattern and the evasion pattern of the target. Washburnfl91 investigates a game in which a 
searcher and a target select their cells in a region by turns and a pay-off function is given by 
the expected travelling cost of the searcher until the detection of the target. For the same 
criterion, Kikuta[10, 1 l] obtains some rigid results of the optimal solution in a special case 
where a target hides in a cell a,nd a searcher examines cells in sequence without overlooking 
possibility. In the above studies, the strategy of the searcher is represented by a sequence 
of searching points. 

There is another type of search games where the searcher distributes a limited amount 
of search efforts on a search space and his strategy is represented by the distribution plan. 
Iida, Hohzaki and Furui[9] investigate such a game with the pay-off function of the detection 
probability, where the target selects his path from some options. They solve the game by 
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making use of the exponential form of the pay-off function and reducing the problem to a 
linear programming problem. As a special case, Hohzaki and Iida[5] study a game with the 
expected reward taking account of the target value and the search cost, where a searcher is 
interested in randomizing his look strategy on a given search path and a target is to select 
his path. The presented paper is the extension of the above two models and its outline is 
as follows. 

A target selects a path from some options at the beginning of the search. A searcher 
determines a distribution of limited amount of search resources over search space and time. 
The search is executed at a finite number of time points by the searcher and terminates on 
detection of the target or at the expiration of the whole search time. By the detection, the 
searcher gets a value but expends search cost in proportion to the used search resources. 
We want to solve the two-person zero-sum game of the target and the searcher with the 
expected reward criterion which is defined as the expected value minus the expected search 
cost. 

In the next section, we describe assumptions of the search model and obtain a pay-off 
function of the two-person zero-sum game and in Section 3, the game is formulated as 
a concave maximization problem. In Section 4, we propose a numerical method to solve 
the game and give optimal strategies of the sea'rcher and the target. In Section 5, some 
characteristics of the optimal solution and the computa,tional time of the proposed method 
are examined by numerical examples. 

2. Description of Search Game and Formulation 
In this section, we describe some assumptions about a search model in detail and formulate 
the pay-off function of the game. 

A search space consists of a finite number of time points t E T = {l, - - - , T} and 
discrete space j E K = {l, - m , K} ca,lled a set of cells. 
A target selects a, path, say W, from a finite number of options H to move along. A 
path W is defined by a set of cells W = {W (t) , t E T} , where W ( t )  E K is the target 
position at time t. He can not change his path during the search, which means that 
he can not get any information about his opponent's strategy on the way of the game. 

A searcher has availa,ble resources u(t) at time t ,  which can be continuously divided 
and distributed 011 arbitrary cells as he likes. If he allocates p(i, t) resources on cell i 

e target is there, he can detect the target with probability 1 - e x p ( - ~ ( i ,  t)) 
where a, is positive. 
On detection of the target on cell z and at time t ,  the searcher gains value V(t) > 0 
but expends search cost ~ ( i ,  t) > 0 per unit resource. We assume that V ( t )  is non- 
increasing for t. 
The seaxch terminates on detection of the target or at the end of time points T 
whichever earlier. On the termination, the searcher gains the expected reward occurred 
during the search operation and the target loses the same value. 

Now we formulate the search game as a single-stage two-person zero-sum game. First we 
obtain the pay-off function of the game. A pure strategy of the searcher is a distribution of 
the search resources y = {y(i7 t)  , i e K t E T} and that of the target is a selection of his 
path W E 0. For these pure strategies, the cumulative search cost C(t, y )  and the detection 
probability P  ̂(p, W )  during time period [l, are given by the following expressions. 

t K 
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The probability that the target is detected at time t is Pxp, W) - P; '  (p, W). When the 
detection does not occur by time T, the searcher must pay C(T, p) without any gain. There- 
fore, the expected reward R(p, W )  during the whole search time period [l, T] is calculated 
as follows. 

where 
K 

AC(t, p)  = C(t + l, p) - C(t, p) = xco(i, t + l )p( i ,  t + l), 
i=l 

AV(t) = V(t + l) - V(t}. 
Because the pay-off function R(-) is strictly concave for {p(i, t), i E K t E T}, we do not 
need to consider the mixed strategy for the searcher as a solution of the game, which is known 
by the game theory concerning with the concave-convex garne[13]. The mixed strategy of 
the target is presented by probability TT(W) >: 0 with which the target selects path W E l̂. 
The relation Lea TT (W) = 1 must be satisfied, of course. Hereafter, we use notation W and 
IT as a specific target path and a specific path selection probability, respectively. When 
the searcher takes a pure strategy {v>(< t}} and the target takes a mixed strategy TT, the 
expected reward of the search TT) is formulated as follows, which is a pay-off of this 

Strategies of the target and the searcher have to satisfy the next conditions. 

wen 
( / ^ , t ) > O ,  & K  t e T ,  (2.10) 
K 

5 4 t )  , t T (2.11) 
i=l 

We denote the set of feasible solutions of the target satisfying conditions (2.8) and (2.9) by 
11 and that of the searcher satisfying (2.10) and (2.11) by Q .  

3. Solution of the Game 
Since the pay-off is given by Eq.(2.7), the game is solved by finding if*, TT* satisfying 
~ ( p *  , TT*) = min, max, ~ ( p ,  IT) = max, min, R(% IT) or R(p* , IT) 2 R(p* , w*) > :(p7 f l )  
for arbitrary TT E 11 and p E (&. Considering that conditions (2.8)&(2.11) give a closed 
domain, it is evident that the game has a finite real number as a value of the game. The 
problem max;,, min, R^y, TT) is transformed as follows. 

rnax min R ( ~ ,  TT) 
ye* wen 

= max min v(w)R(p, W )  = max min R(p, W) = max {v\ R(9,w) > v, W eft} . yea wen pea wen ,E@ 

In the above transformation, an optimal TT* is given by TT* (W) = 0 for {W 1 R(w , p) > v = 

minWt^R{wf, p)}. In the result, we can formulate the game as a concave maximization 
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ip{i , t )>O, * K  t e T ,  
K 

(3.3) 

^{i,t) < u(t) , t e T . 
i=l 

(3.4) 

We should note that the problem does not contain 7 4 ~ ) .  We take v (W), p(z, t) and \(t) 
as Lagrangean multipliers corresponding to conditions (3.2), (3.3) and (3.4), respectively. 
Afterward, we will state the valid reason by that the multiplier v(w) can be regarded 
as the target's mixed strategy. Using these multipliers, we define a Lagrangean function 
L(^, p; v, A, p) as follows. 

L(v, tp; ~1 A, P )  = v + y, v(w)(R(p, W) - v) + y A(t)(u(t) - '^y(i, l)) 
wen t i 

Using this function, an optimal solution of problem (PO) has the next necessary and sufficient 
conditions, so-called Kuhn- Tucker conditions. 

v(u)(R(p,w)-v)=O, w e n ,  (3.6) 

R((p ,w)>vl  w e n ,  (3.7) 
v ( w ) > O ,  W E ^ ,  (3.8) 
9L 

= ~ - ~ T ( w ) = O ,  
Qv wen 

p(t, t)ip(i,t) = 0 , z e K t e T . (3.15) 
As known from conditions (3.6), (3.8) and (3.9), an optimal multiplier v(^) satisfies the 
same conditions as an optimal mixed strategy of the ta-rget must do, that is, 7r(w) > 
O 7  LenTT(w) = 1, ~ ( w )  = 0 for {wJR(w,p) > v}. Furthermore, the summation of the 
first and second terms of the Lagrangean function L(-) becomes V., v(^) R(p, W) = ~ ( p ,  v) 
for an optimal multiplier v. By this reason, we use variable {v(w)} originally denoting the 
target mixed strategy as the Lagrangean multiplier. Considering these discussions, we no- 
tice that expressions (3.10)-(3.15) give the necessary and sufficient conditions of an optimal 
solution p; for a problem rnax., v) , that is, a problem of maximizing the expected re- 
ward given the probability of the target path selection TT. This kind of one-sided optimizing 
problem has been already studied and an algorithm to give an optimal solution is proposed 
by Iida and Hohzaki[8]. The above discussion brings us an idea to solve our game by such 
a way that we repeatedly solve the problem max., R ( ~ ,  v) while varying v until Eqs. (3.6) 
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and (3.7) hold. We will stake a c~mputa~tional algorithm using the idea in the next section. 

4. Algorithm to Solve the Game 
We state some useful lemmas before the proposition of an algorithm of solving the game. 
Lemma 1 A problem max., ~ ( p ,  7r )  has the same optimal solution i f  ratios of 7r ( W )  remain 
unchanged among W E 0. 
The validity of this lemma is self-evident because Rdp, 7r )  is linear for {rr(w)}. For a positive 
real number /3, we have max., R(^, 07r) = j3 m a q  ~ ( p ,  T T )  and two ma,ximizing problems have 
the same solution. This means that flexible methods are possible for solving max., R{fi X ) .  
That is, an optimal solution p* for ma,xp @p, 7 r ) ,  where non-negative { T T ^ ) }  does not 
necessarily satisfy condition (2.9)) stays optimal for max., R{^, 7r) with the following {7r ( W ) } ,  

% ( W )  = W ( ^ ) /  v 7r(w1) , W â 0 
W' â‚ 

(4.1) 

which satisfies condition (2.9). Thus condition (2.9) is not so tight for our algorithm in a 
sense that we can change TT regardless of their summa.tion. Whenever necessary, we can 
normalize { ~ ( w ) }  by (4.1). 

We denote an optimal solution for TT by p*, that is, R(^>) marxa R ( p ,  7r). Similarly, 
we use ip^ as an optimal searcher's strategy of maximizing the expected reward for a specific 
target path W ,  tha,t is, R(p:  , W )  = max., R ( p , w ) .  This solution can be obtalined from 
mmp Rdp, 7r)  in the case of T ( W )  = 1,  7r(w1) = 0 ,  Vw' # W .  

The next lemma deals with the change of ~ ( k )  for a, specific target path k .  
Lemma 2 Modify { ~ ( w ) }  to {7r1(w)} as follows, 

7̂ ) = { ; $ ; ) + A 4 k ) ,  W V w # k  = k . 

Then the expected reward for the path k increases zf A7r(k) > 0 and decreases i f  A*) < 0 ,  
that is, 

if > 01 R(^;' , k)> R ( G  k )  , (4.2) 

i f  < 0 ,  R(^; ' ,  k )  5 7?,(v7T1 k )  . (4.3) 
Proof: The next relation holds. 

7r1) = r(n~)~(ip;, W )  + R(&, k )  = R(^>) + Ar(k)R(p; ,k}  
W 

5 h'.!, w') = fi(p;, , 7r)  + A7r (A)  R ( d t 7  k )  . 
Therefore, 

0 5 f i ( d ,  7r )  - R(&/, 7r )  S A7r(fc) (R(&/, k )  - R(^; , k ) )  . 
Here, we complete the proof. Q.E.D. 

From this lemma, we know that the expected reward of a specific target path could 
be under our control by varying of { ~ ( w ) }  to a certa,in extent. As a stopping rule of our 
computationa~l algorithm, we can ma,ke use of the following lemma. 
Lemma 3 Assume that, for some target paths w1, w2, . - , ws E H and a real number U ,  

the next conditions are satisfied. 

R ( ( ^ * 1 w ~ ) 9  R ( ^ p * ^ w ~ )  > l/ 7 (4.4) 

R ( i p * , w )  = U ,  Vw E H/{wll  - - - , w s }  , (4-5)  
7r*(w) = 0, W { w 1 7 - ~ - ) w s }  . (4.6) 

Then TT* 6 I I ,  p** E iD is an optimal solution of the game and the va,lue of the game is v. 
Proof: Using 111 = {w e III * ( W )  = 0 ,  W e {wiL  - , u s } } ,  we have ~ ( p ; . ,  7 r )  = U for 
TT E II' and v )  > v for TT e I I / I I 1 .  Therefore, R(&*, 7r )  :S v, V TT e II. Furthermore, 
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from the optimality of ip> for TT*, ~ ( ( p * ,  TT*) > TT*) , V (p e a. Consequently, we have 
the next inequality for arbitrary ip E @ and TT E 11. 

R(ip'.., 7 r )  > v = A(&. , TT*) 2 R(p, TT*) . 
That indicates that {v . ,  TT*} is an optimal solution of the game. Q.E.D. 

Now, we are ready to explain an algorithm for computing the optimal strategies of the 
game. Its essence is to find an optimal searcher's strategy ip* while varying TT and make 
them converge to a solution of the game, which is accomplished when Lemma 3 is satisfied. 
Every time the optimization of the searcher's strategy (p for an TT is terminated, we sort 
{R(ip, W), W E S^} in the order of value. Then, we increase T(W) for path W with small 
R(% W )  in order to enlarge the expected reward of the path W and decrease positive 7r(w) 
for path W with large R(ip, W )  within non-negative value in order to make R(p, W )  smaller, 
which is expected by Lemma 2. While we increase or decrease 7r(w), it is not necessary to 
consider condition Eill TT(W) = 1 as seen from Lemma 1. If we can make T ( W )  = 0 for W 

with larger R(p, W) and make R(p, W) have the same value for W with 7r (W) > 0, then we 
will have obtained an optimal solution of the game from Lemma 3. Our algorithm to give 

of the game is as follows. 

Initialize {TT(w), W E fl}, e.g. uniform distribution { ~ ( w ) }  = {l/Jf?l}. Set I == 0. 
For TT, solve the one-sided problem mm+, R{y , TT) and find its optimal solution 
ip* by lida and Hohzaki9s method[8]. 
Sort values of {R(p;,w), W E a} in the order W1 < W2 < - -  < WM, where 
Wk denotes the k-th smallest value, and classify W E O according to the value. 
Assume that a subset fli {7 has the smallest expected reward Wb O2 the 
second smallest one Wz and so on, and HM has the largest one WM, namely, 

j {wI R(ip.,~) = W,}, j = l ; - - , M .  
f Lemma 3 holds, the algorithm terminates. Current (p* and TT normalized by 

formula (4.1) are the optimal searcher's strategy and target's strategy of the 
game, respectively. 
Otherwise, go to (Step4). 
If I is even, increase TT(^) for a certain W E Ol by AT(^) which is determined by 
a method discussed later. 
If l is odd, decrease positive TT(U) with the largest R(&, W )  by ATT(W) which is 
determined by a method stated later, too. 
Increase I by one, I = I + 1, and go back to (Step2). 

We propose a method to calculate ATT(W) in (Step4) as follows. The largest expected 
reward for path k is obtained from R(&, k) = inaxygt R(ip, k) which is equivalent to the 
problem maxygaR(p,7r) in the case of ~ ( k )  = 1, TT(W) = 0, V W # k. We denote the 
maximum reward for path k by a. On the other hand, we estimate the minimum reward 
for path k by minm+ R(p: , k) though it may not be a correct estimation. We denote the 
estimated minimum reward by l&. The maximum or minimum expected reward for path k 
corresponds to the case of ~ ( k )  = 1 or 0, respectively. We expect that the expected reward 
for pa,th k changes linearly from to Ek as ~ ( k )  varies from 0 up to 1 and control the 
decreaselincrease of the expected reward by changing ~ ( k ) .  Our control rule is as follows. 
If we want to enlarge the expected reward of path k by y, we increase v{k) by 

n, 

AT@) = - T 

Rk -Rk ' 
(4.7) 

and if we want to decrease it by y, we decrease ~ ( k )  not beyond current value ~ ( k )  by 
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6) 
(ii ) 

(iii) 

In (Step3), we classify a set of paths 0 according to the value of their expected reward. 
Assume that path W for which the expected reward R(&, W )  is the largest and v(w) > 0 is 
classified into a subset f ^ f t .  We determine 7 of Eq. (4.7) as follows. 

In the case of M' = 1, Lemma 3 is satisfied and the algorithm terminates. 
In the case of M' = 2, the expected reward W1 of W E Ol ought to lift up to and the 
expected reward WMl of W' E OM' ought to put down to the intermediate value of W -  
and W M ~  That is, 

WM' - W, 
7 =  0 

^ 
Using 7, we increase value n(k} for a certain k E 0, by Av(k) of Eq. (4.7) if I is even, 
and decrease 7r{k) for a certain k E ^IM/ by Av(k) if I is odd. 
In the case of M' > 2, if 1 is even, we set 

^ = W 2  - W, (4.9) 
for a k E Ol in order to enlarge the expected reward Wl up to W2 and increase v(k) 
by Av(k) determined by Eq. (4.7). 
If I is odd, we set 

7 = WMI - WMI-I (4.10) 
in order to shorten WMt up to WM4 a,nd decrease v (k) by Av (A;) determined by (4.7) 
for a k E b. 

Now, we finish explaining our computational algorithm for optimal searcher's and target 'S 

strategies. The validity of our algorithm can be proved as follows. Our original problem 
is a maximizing problem (PO) which is equivalent to maxipga minKen R(^, v). We prove 
that becomes smaller step by step varying v in our algorithm and converges to 
minx R{̂ , v) = minx maxp R ( ~ ,  7r) a,t last. If so, we might say that our algorithm moves 
in such a way that it solves a Lagrangean dual problem of (PO) which is just a minimizing 
problem minx R(&, v). 

Assume that we get a multiplier v and a one-sided optimal solution ip* at a certain stage 
in our algorithm. From (4.1), we can normalize v whenever we like and by this reason, we 
assume v(w) = 1. In (Step4), we change current TT to a new n' by increasing v(k) by 
Av(k). Its 

AR 

Because of 

resulting difference AR of the total expected reward is estimated as follows. 

. . 

k E Q-, we have R(ip& k) < R^',, T ) .  If Av(k) is enough small, the ineqa,utlity 
R(&, k) < &',, v) still holds for v' from the continuity of R(-, k ) .  Taking account of 
&',, 7r) - G'., v) 2 0, it results in AR < 0. When R(P;/, k) < &,,v) is not satisfied 
for Av(k) estimated by (4.7), we may set Av(k) smaller, e.g. Av(k) = Av(k)/2. 

Similarly, by the decrease of AT (k) for k E QMt, the change of the expected reward is 
estimated as follows; , 

The fact k E OM/ guarantees R(&, v) < R(&, k). Then we have v) < R(&, , k) 
for enough small Av(k). If the estimation (4.7) does not sakisfy this rela,tion, we may 
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decrease 

W,? 4 
From 

AT(&), e.g. A7r(k) = A7r (&)/2, until the inequality holds. We have the inequality 
- R(^,,, 7r) >_ 0 of course. In the result, we obtain AR < 0. 
the above discussion, we can decrease R(&-, 7r) by adopting adequate A T T ( ~ )  each 

time (Step2)-(Step4) are repeated. From the concavity and the finiteness of the expected 
reward, we conclude that our algorithm makes Ri^, 7r) converge to a minimum value 
mm,- T). Thus we have proved that our algorithm has the so-called global conver- 
gence property[12]. However, we can not have clarified the rate of convergence of it because 
Iida and Hohzaki's method which is used in (Step2) to obtain a one-sided optimal distribu- 
tion of search efforts after changing T ( W )  is difficult to be analyzed in term of the rate of 
convergence. 

5. Numerical Examples 
Here, we investigate some characteristics of optimal strategies of the searcher and the target 
by the sensitivity analysis in some examples and the computational time of the proposed 
method. 

Consider a search in discrete cells K = {l ,  - - ,5} and discrete time points T = {l, - - ,10}. 
The target has four options of paths, that is, \̂ l\ = 4. There are so many system parameters 
included in the game that we can not exhaust the sensitivity analysis concerning with all 
parameters. We keep the next parameters constant through all examples. 

~ ( Ã ˆ , t ) = l  u ( t ) = = 5 ,  Ãˆe t e T .  
(1) Effect of target paths 
(Case 1) The search efficiency on cells and the value of the target are assumed to be 
constant. 

Cki = 0.2 , V(t) = 20 , ie K t e T . 
Routes of four target paths are illustrated in Fig.1 and shown in Table 1. The target on 
Path 3 or 4 stays always at cell 3 or 2, respectively. Paths 1 and 2 run across the cell space 
left to the right and right to the left. 

Time 

1 2 3 4 5 6 7 8 9 1 0  

Figure 1. Target Paths 
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Table 1. Options of target paths 

In this case, an optimal strategy of the target is TT* = {0.076,0.028,0.449,0.447} which 
means the target should mainly select Paths 3 and 4 with almost equal probability and 
should not use other paths. An optimal searcher's strategy, say an optimal distribution of 
search resources, is given in Table 2. Blank entry indicates no distribution. The searcher 
should allocate his search resources in cells 2 and 3 which Paths 3 and 4 run through, 
especially in cross points between Paths 3, 4 and the other paths. At many time points, 
only a part of available resources u(t) = 5.0 is used and the searcher exhausts them only at 
time points 9 and 10 when the probability of the target's existence focuses on cell 2 and 3. 
The value of the game is R(&. , TT*) = 8.03. 

Table 2. Optimal distribution of search resources 

(Case 2) We change options of the target's paths as shown in Fig.2 and Table 3 while other 
parameters remain unchanged as Case 1. 

Time 

1 2 3 4 5 6 7 8 9 1 0  

10 

2.500 
2.500 

Cells \t 
Cell l 
Cell 2 
Cell3 
Cell 4 
Cell 5 

Figure 2. Target Paths 

1 

0.826 

7 

2.868 

2 

2.244 

4 

2.035 

3 

2.975 

8 

3.647 

9 

2.342 
2.658 

5 

0.704 
1.226 

6 

1.088 
1.055 
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Table 3. Options of target paths 

In this case, an optimal mixed strategy of selecting paths is TT* = {0.0,0.285,0.285,0.430}. 
Path 1 comes across all other paths and it is convenient for the searcher. That is why the 
target should never select it. The probability of target's taking Paths 2 and 3 is approx- 
imately equal to the probability for Path 4, which makes it difficult for the searcher to 
anticipate where the target is each time. The searcher takes an optimal strategy presented 
by Table 4. The distribution of search resources in cell 3 begins after time 5 when Path 2 
gets together with Path 3. The value of the game is R(^;. , n*) = 7.74. 

Table 4. Optimal distribution of search resources 

(Case 3) A special set of the target paths is given in Case 3. We set H so that each target 
path stays alone at a cell which is illustrated in Table 5 .  Other parameters are the same as 
in Case 1. 

Table 5. Options of target paths 

In this case, optimal strategies of the target and the searcher are the balanced probabilities 
* = {0.25,0.25,0.25,0.25} and p(i, t) = 0, respectively. The searcher has no way to 
estimate which of four cells the target is in and can not perform an efficient search at all. 
The value of the game is 0. 
(2) Effect of the target value 
(Case 4) Even if we have the same circumstance as Case 3, an optimal solution changes 
depending on other parameters. If we increase the target value up to V(t) = 50, an optimal 
strategy of the searcher becomes as follows, 

f ( i71 ) -1 .21 ,  i e K ,  p(Ã ,̂t =1.25 ,  î  K t â ‚ ¬ { 2 , - - - , 1 0  
while that of the target remains unchanged. The detection probability of the target in this 
case may be low even though the search efforts are distributed but the reward is expected 
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to be larger because of the high target value. This fact encourages the searcher to begin the 
search. The value of the game is TT*) = 25.15. 
(3) Effect of the search efficiency of cells 
(Case 5) We change on of Case 1 as follows. 

(11 = 0.1 , (1; = 0.2, (13 4 3 ,  a d . 4 ,  (15 = 0.5 , 
which means that the search efficiency of cells per unit search resource becomes larger in 
the order of cell numbers 1.2, - - ,5. 

In this case, an optimal strategy of the target is TT* = {0.075,0.021,0.361,0.543} and 
that of the searcher is given in Table 6. 

Table 6. Optimal distribution of search resources 

The target tends to select Path 4 than Path 3 comparing with Case 1 because Path 4 
stays at Cell 2 with less detectability for the target. According to the target's strategy, the 
searcher focuses a little more allocation of search resources on Cell 2 than on Cell 3. The 
little unbalance of the target's path selection and ai > 0.2 in Cell 2, 3 and 4 make the value 
of the game lift up a little to 9.93 from 8.03 of Case 1. 
(4) Computational time 

It is thought that there are three parameters of having much effect on the computational 
time of the algorithm proposed in Section 4: the number of cells K = 1 Kl, the number of 
target paths 1 01 and the number of time points T = \T\ . Noting that the proposed algorithm 
repeats the adjustment of a balance between 101 expected rewards for all target paths, it is 
anticipated that the parameter 101 directly influences the number of the repetition of the 
algorithm. As a sub-procedure, the algorithm uses Iida and Hohzaki's method which is also 
an iterative method of revising a feasible solution better at each time point and making 
a sequence of feasible solutions converge to an optimal one. That is why the number of 
time points T plays an important role in the computa,tional time of their method. A large 
K makes many variables {ip(i, t} , i E K t E T} and might increase the computational 
time of solving the game to some extent. To examine the extent of these effects on the 
computational time, we take statistics of CPU- times by the following example. 

The whole target paths are randomly generated. That is, a cell is selected randomly from 
K cells T times and then a path is generated. This procedure is repeated 101 times and a 
set of target paths is made. The detectability parameter % of cell i is selected randomly 
from interval [O. 1, l]. The value parameter of the detection and the cost parameter are kept 
constant, V(t) = 20 and co(i, t) = 1, respectively. In the search game, the total amount 
u(t) = 5 of search efforts are supposed to be available to the searcher. Thus, a game problem 
has been generated which is solved by the proposed method to measure CPU-time. IBM 
personal computer Aptiva B97(Pentium 200MHz) and the programming language BASIC 
are used on the computation. 

For a combination of K, 101, T, a hundred problems are generated and a mean value 
of CPU-times required to solve the problems is calculated. For every combination of K = 
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5,10, 101 = 5,10 and T = 5,10, the average CPU-times are given in Table 7. 

Table 7. CPU-time 

As we expected, 101 has much effect on the computational time. The CPU-time for the 
case of (K, 101, T) = (5,10,5) is about 4 times as large as the case of (K, lfll, T) = (5,5,5). 
The same tendency is seen in the cases of (K, 101, T) = (5,5,10) and (K, 101, T) = (5,10,10) 
or the cases of (K, \^l\, T) = (10,5,10) and (K, \^\, T) = (10,10,10). The varying of T 
verifies that it has approximately the same effect as 101 on the CPU-time. Comparing with 
these two elements, the effect of K on the CPU-time is very small. 

6. Conclusions 
This paper investigates a search game with two players, say, a searcher and a target. At 
the beginning of the search, the target selects his path from some options and the searcher 
determines his distribution of his available search resources into a search space which consists 
of discrete cells and discrete time points. In Introduction, we survey previous researches 
concerning with search problems for a moving target. The assumptions that the target 
selects his path and the searcher allocates the search resources into the search space are 
thought to be basic assumptions used in many studies. 

In our model, the searcher gains a value on detection of the target while he expends 
the search cost depending on the allocation of the search resource. The criterion of the 
problem is the expected reward which is defined as the expected value minus the expected 
search cost. The criterion can contains the criterion of the detection probability of the 
target, which many studies deal with as most important criterion, and then, in that sense, 
it is a generalized criterion which makes us view the problem from the point of the cost- 
performance. The searcher acts as a maximizer of the expected reward and the target as a 
minimizer. 

There are not so many papers dealing with the search garme where the strategy of the 
searcher is represented by the distribution plan of search efforts. We formulate the search 
problem as a two-person zero-sum game with a pay-off function of the expected reward. By 
the theorems of the convex game, we know that an optimal solution is found in the region 
of the mixed strategy of the target and the pure strategy of the searcher. We reduce the 
game to a concave maximization problem and propose a computational algorithm to give an 
optimal solution. The algorithm proceeds in such a way that one-sided problems generated 
from the original game are repeatedly solved and a sequence of feasible solutions generated 
by the algorithm converges to an optimal solution, which is proved. By some examples, we 
examine the effect of some system parameters on an optimal solution, and analyze some 
characteristics of the solution and the computational time of the proposed algorithm. 
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The pay-off of the game has a characteristic form that it is linear for one variable set 
and concave for another variable set, by which we propose a computational algorithm. We 
describe this idea in the context of solving a search game. However, this method could be 
applied to many problems in not only the search theory but also other fields, we think. 

The problem is formulated 011 discrete search space and time. If we want to theoretically 
discuss the continuous version of the problem and obtain an optimal solution which is 
represented by a function on the continuous search space and time, we would need some 
different tools from ours, e.g. the calculus of variations. However, if the approximate 
estimation of the optimal function is acceptable, our method could be applied by dividing 
the search space and time into many discrete regions. In this case, we must consider a 
trade-off between the precision of the solution and the computational time on deciding how 
many regions we take. 
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