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Abstract We study a discrete-time single server priority queueing model with vacations under random 
order of service discipline within each class. This model captures the behavior of the head-of-line request 
queues in large input-buffered ATM switches. The server takes vacations when the queue has been empty 
for a random number of slots. We presume a message consists of a geometrically distributed number of cells. 
To represent this aspect, we assume that once a message gets in turn for service, it is served for a constant 
time which corresponds to one-cell-time and it rejoins the queue after service with a given probability. We 
derive the joint probability distribution of the queue length and waiting time through probability generating 
function approach. Mean waiting times are obtained and their numerical results are shown. 

1. Introduction 
In recent years, telecommunication traffic volume is rapidly increasing as various multimedia 
applications are being developed and the coverage of communication networks becomes 
widespread to accommodate more users. In order to integrate these types of traffic satisfying 
the requested QoS in a common network, ATM technique has been developed and the 
performance evaluation of ATM switches is strongly desired. In the performance analysis 
of the input-buffered ATM switches, the introduction of the concept of virtual queues is 
important [7]. The virtual queue consists of messages at  the head of each input-buffer 
competing for the same output-port. We regard the virtual queue and the output-port as a 
system, and estimate the performance of the system through queueing theory. 

Queueing systems have been extensively studied and applied in the performance evalu- 
ation of computer systems and communication networks, and a good compilation of results 
on the M/G/l  queueing system and its variants can be found in [10]. M/G/1 queues with 
vacations [3] serve as simplified models in analyzing cyclic service network protocols. By 
vacation, we mean that the server becomes unavailable for occasional intervals of time. 
Variants of queueing model with priorities [5] can be used to mathematically describe net- 
works that support a variety of traffic classes with different service requirements. In the 
vast literature on single server queues, many of them treat continuous time systems under 
FIFO discipline. In ATM networks, a message is divided into cells, blocks of a constant 
length, before transmission and cells are switched in a constant time. Thus an ATM switch 
is often modeled as a discrete time queueing system. Furthermore in these studies on the 
performance of ATM switches, the order of service is not FIFO in many cases. Especially, 
random order of service discipline (ROS) is significant in the context of performance anal- 
ysis of input-output-buffered ATM switches [l]. Under ROS, the next message for service 
is selected a t  random from the messages of the highest priority class waiting in the queue. 
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Takagi [ll] widely studies discrete time systems including those under ROS. However, as 
Laevens and Bruneel [B] point out, the result for ROS systems in [l11 is rather complicated 
and seems difficult to be applied to performance analysis of various ROS systems as it is. 

In this paper we use the technique introduced in [6, 7, B]. In [6] the waiting time under 
ROS discipline for messages consisting of a single ATM-cell is analyzed, and the result is 

to  cover the case of variable-length messages in [B] and the case where a single 
ATM-cell may feedback in [7]. We analyze a discrete time queueing system with vacations 
each of which is initiated after the expiration of close-time without message arrivals. We 
study a system where variable-length-messages belong to one of two priority classes. The 
number of feedbacks corresponds to the length of messages. We assume preemptive service 
where a message of normal priority class in service is put aside upon arrival of a message of 
high priority class. This queueing model is an extension of previously analyzed models in 
[G, 7, 81 and provides more flexibility in performance studies. 

In ATM networks, all information including voice, video, and data, is conveyed in an 
integrated fashion. The quality-of-service (QoS) required by different applications is highly 

classify cells in two types, cells including real-time-data and those including 
e-data. Since long delay is fatal for real-time-data, a group of cells of this 

type is modeled as high-priority-message, while a group of cells conveying non-real-time- 
data is modeled as normal-priority-message. Service priorities are not explicitly indicated 
in the header of cells, however are associated implicitly with a VP or VC [2]. A call is 
the connection request to  transfer information stream of multimedia traffic. When a source 
makes a call to  a destination, the source has to first require VCs of ATM networks. As 
a new call gets VCs, following two events happen. 1) Call admission control receives the 
request of new VCs from a new call and checks the status of the network whether new VCs 
are able to  be established under QoS required by the call and 2) VCs are established. I t  is 
necessary t o  limit the number of accepted calls in ATM networks to satisfy QoS requested 
by calls. Call admission control decides properly whether a new VC is accepted based 
upon its anticipated traffic characteristics, its QoS requirements and the current network 
load [U]. In ATM networks, keeping VC connection while no cell is transmitted wastes 

ecially buffers, and this should be avoided by putting the threshold concerning 
inactive periods. Once the threshold has been expired, the connection is 

automatically closed to  increase the utilization of network resources. We can model this 
y using a queueing model with close-time, which corresponds t o  the threshold 

for disconnection. The time from the instance when a call requests VCs to the instance the 
call actually gets VCs is considered as a period of service suspension and modeled as the 
remaining time of vacation in our system. Even under low utilization of network resources, 
new VCs are only provided after call admission control admits their connection requests 
and there is some time-lag between occurrences of requests and their set-ups. Under high 
utilization of network resources, the meaning of vacation is more significant. Under this 
situation, new s are not allowed upon a request due to  network congestion. We show 
some examples hese situations in the following. 1) Calls from various applications occupy 
a lot of VCs. In this case a new call has to wait until some applications release their VCs. 
2) The network supports ABR(Availab1e Bit Rate) service. In ABR service, the network 
provides rate feedback to the sender asking it to slow down when congestion occurs. In this 

s t  of the available bandwidth after allocated to preceding VCs might be highly 
hen a new call is requested, the network first puts back pressure to  ABR traffic 

r to reduce their transmission rates. It takes some time for new VCs t o  be 
utilization gets lower. 
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The main goal of this paper is to present a new method to estimate the performance of 
ATM switches using ROS queueing system with vacations, feedback, priorities, and close- 
time, which generalizes the queueing system by Laevens and Bruneel [7, 8, 61. The approach 
taken here is by means of the probability generating function (PGF) technique. It should 
be noted that our approach is based upon that of Laevens and Bruneel and enables one to 
treat complicated discrete queueing systems under ROS discipline easily. 

This paper is organized as follows. We describe the model and introduce notation in 
section 2. Section 3 derives the queue size distribution a t  various observing points through 
generating function approach. Using the results in section 3, section 4 describes the deriva- 
tion of the waiting time distribution for both high- and normal-priority messages. Section 5 
presents the numerical results for the mean waiting time of both classes of messages under 
various scenarios. 

2. The Model 
We consider a discrete-time queueing model. Time is thus divided into consecutive intervals 
of a fixed length, called slots. There is one single server and the system has an infinite 
buffer capacity, so that no message is lost due to buffer overflow. There are two kinds of 
messages arriving at the system. They are indexed as MH and MN. MH messages have 
priority over MM messages. That is, MN messages are served iff there is no MH message in 
the queue. The order of the service for messages of the same kind is random(R0S). That 
is the next message for service is selected at  random from those waiting in the queue. The 
arrival process is general and independent, i.e., the number of new arrivals during each slot 
is assumed to be independent and identically distributed (i.i.d.). We denote by a-' the 
number of new arrivals of Mp(p = H, N)  messages during slot k .  Then, all a  ̂ are i.i.d. 

a^ 
with common probability generating function Ap(xp) E[xpp ] (p = H, N).  

Every message receives service of one slot once it reaches the server. If afterwards it 
requires more service, it has to rejoin the queue and wait once more until it wins the right 
to be served. Messages rejoining the queue form an internal arrival process, while messages 
arriving to the queue from outside the queue form an external arrival process. We assume 
the number of slots for service which is required by a message is geometrically distributed 
with parameter ~ ( 0 ; ~ )  for MH(MN) messages. 

When the server finishes serving a message and finds the system empty, it undergoes 
close-time for a some number of slots. We introduce the probability generating func- 
tion(PGF) C(z) for the number of slots in a close-time. If there is no message in the 
system when a close-time ends, the server takes a vacation, otherwise it begins service for 
messages upon their arrivals. Note that a close-time not always lasts as long as 'predicted' 
by the distribution characterized by C(z}. In other words, the length of an actual close 
time may be distributed differently from C(z). We assume that the length of a vacation is 
i.i.d. and define V(z) as the PGF for the number of slots in a vacation. At the end of each 
vacation, it checks again if there are messages waiting in the queue. When it finds any, it 
begins to serve. Otherwise it takes another vacation. Later on this procedure is repeated. 

The equilibrium condition for % messages is given by 
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and that  for MN messages is given by 

where An is the mean number of MH messages arriving in a slot, & A H ( x H )  \i^\ and AN 
is the mean number of MN messages arriving in a slot, &AN ( x N )  l z N = l .  
2.1. Classification of the System States 
In this section we introduce periods and cycles to make clear the behavior of the system. 
A set of designated slots successively located on the time axis is called period. We define 
cycle as a set of slots or periods to  capture the cyclic behavior of the system. 

We define C-period as a period consisting of slots in which the server undergoes close- 
time. Similarly we define V-period as a period the server is taking vacations, and B-period 
as a period the server is devoted to  service. We define Basic-cycle as a successive sequence 
of C-period followed by V-period if any and B-period. At the beginning and the end of 
Basic-cycle, the number of messages in the system is zero. Whether V-period appears in 
Basic-cycle depends on whether any MH or f i  messages arrive during C-period. On the 
contrary, exactly one C-period and B-period appear in each Basic-cycle. See Figure 1. 

* -. . . . . . . . . the boundary of the periods with the queue empty 

FB-slot --a.-.- 

/.. a slot in which High-Priority message is served ---------- GH-cycle 
BH-slot ---."** 

:;::: :::'Â¥Â $g --------- -  D BN-slot --------- a slot in which Normal-Priority message is served 

Figure 1: Structure of Basic-cycle 

We classify slots in B-period into three types, FB-, BH- and BN- slots. FB-slot is a slot 
in which the server is devoted to the service for either one of messages waiting in the 
queue a t  the end of C-period or V-period, or one of those which arrive to the system in 
FB-slots. We define FB-period as a successive sequence of FB-slots. If C-period or V-period 
is not ended by the arrival of f i  messages but that  of & messages, FB-period does not 
appear in Basic-cycle. In B-period, slots aside from FB-slots are classified into BH-slot or 
BN-slot, if any. We define BH-slot as a slot in which the server serves MH message and 
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BN-slot as a slot in which the server serves f i  message. Since there is no MH message 
in the queue at  the end of FB-period, it is followed by BN-slot unless no message is in the 
queue. BN-slot also appears after C-period (V-period) not followed by FB-period. If there 
are any MQ messages arriving to the system during this BN-slot, the next slot must be 
BH-slot. A sequence of BH-slots continues until all MH messages in the queue are served. 
This means no MN message is served until then. At the end of the successive BH-slots, 
unless no MN message is in the queue, another BN-slot appears and the process described 
above is repeated. 

We define GN-cycle as a successive sequence of BN-slot followed by BH-slots if any. In 
this cycle exactly one MN message and MH messages if any are served. We define GH- 
cycle as a slot in which one MH message is served. This means each FB-slot and BH-slot 
corresponds to this cycle. 

To focus on the behavior of the tagged message, we define TH-cycle and TN-cycle. The 
first TH-cycle begins a t  the beginning of the first GH-cycle after the arrival of the tagged 

message, and ends a t  the end of GH-cycle in which the tagged message is served for 
the first time. If the tagged My message requires more slots for service, we define another 
TH-cycle as a successive sequence of GH-cycles which begins at  the end of the last TH-cycle, 
and ends at the end of the next GH-cycle in which the tagged MH message is served. This 
procedure is repeated until the tagged MH message leaves the system. See Figure 2. In this 
figure, the tagged MH message requires three slots for service before it leaves the system. 
Similarly, we define TN-cycle. See Figure 3. In this figure, the tagged MN message requires 
two slots for service before it leaves the system. 

GN-c ycle 

I arrival of the tagged M message 
TH-c ycle 

t t 

departure of the tagged M message 
--.-.--h-- GH-cycle the tagged message is served 

Figure 2: Structure of TH-cycle 

3. Queue Size Distribution 
In this section, we derive the probability generating function (PGF) for the numbers of & 
and MN messages at  various observing points. 

We define IIFB(xH) as the PGF for the number of Mn messages at  the departure point 
of a single cell in FB-periods, IIGN(xN) as the PGF for the number of MN messages at  the 
end of GN-cycles and IIBH (xH) as the PGF for the number of MH messages at  the end 
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arrival of the tagged M message 
I GN-cycle 

departure of the tagged MN message 
.---.-...- GN-cycle in which the tagged message is served 

(the tagged message is served in the first slot of the GN-cycle) 

Figure 3: Structure of TN-cycle 

of BH-slots. See Figure 4. These PGFs are derived by using the method of the embedded 

n̂  
m-slot  -...--- 

D ..-- a slot in which High-Priority message is served ---------. GH-cycle 
. BH-slot .--""- 

B N - ~ ~ ~ ~  .--.-..... a slot in which Normal-Priority message is served 

Figure 4: Observing points for each PGF 

Markov chain (sec. 1.1 in Takagi[lO]). 
For the ease of convenience in the following analysis, we define BH(xH), BN(xN), 

CFB(xH, xN)  and VFB(xH, X^). By BH(xH) we express the PGF for the number of in- 
ternally arriving MH messages in one GH-cycle as well as in one FB-slot. We also define 
BN(xN) as the PGF for the number of internally arriving MN messages in one GN-cycle and 
CFB(xH, X^} as the joint PGF for the number of MH and MN messages at  the beginning of 
FB-period which follows C-period. Similarly to CFB(xH, xN),  VFB(xH, xN) represents the 
joint PGF for the number of MH and MN messages at the beginning of FB-period which 
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follows V-period. These are given by 

Next we derive GN(2), the PGF for the number of slots in one GN-cycle. We define 
QH7\{z) as the PGF for the number of slots the server spends before it serves all MH messages 
in the queue on the condition that one MQ message exists in the system at the beginning 
of a slot. The PGF for the number of externally arriving MH messages during this slot is 
given by AH(xH). On the other hand, that of internally arriving MH messages is given by 
BH(xH). Each arrival generates an independent and identically distributed busy period for 
MH messages. Thus we get the recurrence relation 

At the beginning of a successive sequence of BH-slots, the number of My messages is 
distributed as (AH(xH) - A ~ ( O ) ) / ( ~  - ~ ~ ( 0 ) ) .  Then QBH(z), the PGF for the number of 
successive BH-slots, is given as 

In GN-cycle, the number of slots in which the server works 
MH message arrives to the system during the first slot, in 
This event occurs with probability AH (0). Otherwise, the 

for MH messages is zero when no 
which an MN message is served. 
GN-cycle continues until all & 

messages in the system are served. In this case the GN-cycle consists of one slot for the 
service for MN message and a some number of slots distributed according to W). From 
the argument above, the PGF for the number of slots in GN-cycle is given as 

3.1. Derivation of Tif (xH) 

By adopting each departure point of a single cell of MH message in FB-period as a Markov 
point, we have the following equation 

where II:B is the probability that the number of MH messages is zero a t  a Markov point 
and xFB(xH,  xN) represents the joint PGF for the queue size of M y  messages and f i  
messages a t  the beginning of FB-period. Notice that AH(xH)BH(xH)/xH represents the 
PGF for the number of & messages which arrive and leave the system in a slot. We derive 
XFB(xH, xN) in the following. Each FB-period follows either C-period or V-period. In case 
it follows C-period, at least one MH message arrives during C-period. We define PC-FB 
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as the probability that FB-period follows C-period in one Basic-cycle. On the other hand, 
in case FB-period follows V-period, neither MH message nor MN message arrives during 
C-period but at  least one MH message arrives during V-period. We define pv-FB as the 
probability that FB-period follows V-period in one Basic-cycle. From the above observation 
they are given as 

The PGF x F B ( x H ,  xN) consists of CFB(xH, xN) if FB-period follows C-period while it 
consists of VFB(xH, xN) if FB-period follows V-period. Therefore we have 

Solving (3.4) and determining by the normalization condition IIm(l)  = 1, we have 

where XFB is the mean number of My messages at the beginning of FB-period, 
-xFB(xH7 ~ X H  l) l x H s l .  

3.2. Derivation of P N ( x N )  
By taking Markov points at the end of GN-cycles, we have the following equation 

where llfN is the probability that the number of MN messages is zero at a Markov point 
and XGN(xN) represents the PGF for the queue size of MN messages at  the beginning of 
the first GN-cycle in one Basic-cycle. Notice that GN ( ~ n { x ~ ) )  BN (xN)/xN represents the 
PGF for the number of MN messages which arrive and leave the system in one GN-cycle. 
We derive XGN(xN) in the following. From the beginning of Basic-cycle to the beginning 
of the first GN-cycle in it, the system state changes in four ways. 
[Case l] C-period -+ GN-cycle 
[Case 21 C-period -+ FB-period -+ GN-cycle 
[Case 31 C-period -+ V-period -->Â GN-cycle 
[Case 41 C-period -> V-period Ã‘ FB-period -+ GN-cycle 
We define PGN-I, , p~N-4 as the probability that the first GN-cycle appears in the cor- 
responding manner described above. We also define X y ( x N ) ,  - - - , X f l x N )  as the PGF 
for the number of MN messages a t  the beginning of the first GN-cycle which appears in the 
corresponding manner described above. In Case 1, no MH message and at  least one MN 
message arrives during the last slot in C-period. In Case 2, at least one MH message arrives 
during the last slot in C-period and at  least one MN message is in the queue at  the end of 
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FB-period. In Case 3, neither MH nor MN message arrives during C-period, but at  least 
one MN message and no MH message arrives during V-period. In Case 4, neither MH nor 
MN message arrives during C-period, at  least one MH message arrives during V-period and 
at  least one MN message is in the queue at the end of FB-period. From these observations 
we have 

and 

x?(xN) = 
VFB ( @ H , i  (Aiv(xw)) l xw) - VFB ( @ H , i  (AN (0 ) )  ,0)  

l - VFB (@H, l  (AN (0 ) )  ,0 )  

Finally we have 

Solving (3.8) and determining 11$̂  by normalization condition nGN(l) = 1, we have 

where XGN is the mean number of MN messages at  the beginning of the first GN-cycle, 
- d - x G N ( x N )  lxN=17 and OGN is the mean number of slots in one GN-cycle, -&GN(z) lz=l. 
~ X N  

3.3. Derivation of I I B H  ( x H )  
By adopting the end of each slot in BH-slot as a Markov point, we have the following 
equation 
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where nfH is the probability that  the number of My messages is zero at  a Markov point. 
Solving (3.13) and determining IIY by normalization condition IIBH(l) = 1, we have 

Remark 
Although we can derive the P G F  for the number of messages a t  an arbitrary point, we 

do not present the result due to the space limitation. IIFB(xH), IIGN(xN) and IIBH(xH) 
suffice to derive the waiting time distribution of an arbitrary message. 

4. Waiting Time Analysis 
In this section, we analyze the waiting time of the tagged message. To begin with, we 
introduce MT, m, GT-cycle and TT-cycle in order to  treat the case the tagged message 
is of MH type and the case the tagged message is of Myr type in a unified way. We call 
those messages belonging to the same class of the tagged message My messages. That  is 
MT messages correspond to messages if the tagged message is MH message and Mpi 
messages otherwise. Similarly we denote by q, the parameter for retrial probabilities, 
or aN according to  the class of the tagged message. GT-cycle and TT-cycle are also defined 
in this manner. 

The tagged message is called waiting when it is in the system but not being served. We 
define waiting slots as those slots in which the tagged message is waiting and serving slots 
as  those slots in which it is being served. Sojourn slots consist of waiting slots and serving 
slots. The waiting time of the tagged message is expressed by the number of waiting slots. 
We classify the waiting time into two types, initial delay and main delay. Initial delay starts 
with the arrival of the tagged message and ends a t  the beginning of TT-cycle. Main delay 
consists of the slots in TT-cycles aside from serving slots and the slots in the last GT-cycle. 
In the following, the length of main delay in slots is considered. 

First we introduce the following notation in order to  make clear the structure of n-th TT- 
cycle. 

the number of externally arriving MT messages during the i-th GT-cycle in the 
n-th TT-cycle 
the number of internally arriving MT messages (feedbacks) during the i-th 
GT-cycle in the n-th TT-cycle 
the number of slots in the i-th GT-cycle in the n-th TT-cycle 
the number of GT-cycles in the n-th TT-cycle 
the number of other MT messages present a t  the beginning of the i-th GT-cycle 
in the n-th TT-cycle 
the number of waiting slots a t  the beginning of the i-th GT-cycle in the n-th 
TT-cycle 
the number of other MT messages present a t  the beginning of the dn-th 
GT-cycle in the n-th TT-cycle 
the number of waiting slots a t  the beginning of the dn-th GT-cycle in the n-th 
TT-cycle 

See Figure 5. We define the probability pnli (k, l) as 
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the last GT-cycle in which MT is served 

main delay (excluding serving slots) \ 
I I 1 l st TT-cycle 1 2nd TT-cycle 1 - - 1 n-th TT-cycle 1 - - llast ~ ~ - c ~ c l e  :$$l 

t > 

M-r is served 
t 1 

Figure 5: Structure of n-th TT-cycle 

From the total probability result, 

~n , i+ i  (v, l') 

k=O 1=0 

The system remains in the n-th TT-cycle at  least one more GT-cycle if the tagged message is 
not selected for service at the beginning of the i-th GT-cycle. This happens with probability 
l/(l + 1) if qn,i = 1. Under this condition, qn,l+l = l' if an,i + bn,i = l' - l + 1. And wn,i+l = k' 
if Sn,i = k' - k .  From these observations one can show that 

We define GT(& AT(xT) and BT(xT) as follows 

GT(z) : the PGF for the number of slots in GT-cycle 
Ar(xT) : the PGF for the number of externally arriving My messages in a slot 
BT(xT) : the PGF for the number of internally arriving MT messages in one GT-cycle. 

After some algebraic manipulation, (4.1) and (4.2) yield 

where Hn,i(z, xT) is the joint PGF for the number of waiting slots and other MT messages 
at  the beginning of the i-th GT-cycle in the n-th T-cycle along with the event that the 2-th 
GT-cycle exists in the n-th T-cycle (dn i), j 
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The derivation of (4.3) is given in Appendix (A. l). Now, we define the probability p u k ,  l )  
as 

p',?,(k, l) = Prob [dn 8, wn,i = k, qn,i = l]. 

The relation between pn,i (k, l) and p;,, (k, l )  is 

Next, we define In7i(z7 xT), the joint PGF for the number of waiting slots and other MT 
messages at  the beginning of the dn-th GT-cycle in the n-th TT-cycle along with the event 
the i-th GT-cycle is the last GT-cycle in the n-th TT-cycle (dn = z) as 

From (4.4), we get 

We define In(z,  xT) as the joint PGF for the number of waiting slots and other MT messages 
at  the beginning of the dn-th GT-cycle in the n-th TT-cycle. This is easily given by summing 
Up In,i(zi X T ) ~  

From (4.3) and (4.5), one can derive 

The derivation of (4.7) is described in Appendix (A.2). 
On the condition that the tagged message requires more than n slots of service, no 

message leaves the system at the end of the (n - l)-st TT-cycle. Therefore Hni(z ,  xr) is 
given by 

where U(z, xT) is the joint PGF for the number of waiting slots and other MT messages at 
the beginning of the first TT-cycle. We define I (z7  xT} as the joint PGF for the number 
of waiting slots and other MT messages at  the beginning of GT-cycle in which the tagged 
message is served. Since the number of packets in My message is geometrically distributed 
with parameter ay, I(z, xT) is given as, 
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From (4.7) and (4.8), we have the differential equation for I (z ,  xT), 

The derivation of (4.9) is explained in more detail in Appendix (A.3). 
4.2. Initial Delay 
In this section we consider events in initial delay slots for each type of messages classified 
according to the system state the tagged message observes upon arrival, and obtain the 
appropriate form of U(z, xT) in (4.9) for them. 
4.2.1. Initial Delay of the Tagged High-Priority Message 
By conditioning the system state which the tagged MH message observes upon arrival, we 
consider the waiting time of MH message in five different cases. We denote MH messages 
which arrive to the system in C-period as MS, V-period as M:, FB-period as M y ,  BN- 
slots as e N ,  BH-slots as M:". We define Uc,H ( z ,  xH) as the joint PGF for the number 
of waiting slots of. the tagged MÂ message and the number of other M g  messages a t  the 
beginning of the first TH-cycle. Since the first TH-cycle for the tagged M$ message begins 
immediately after its arrival, Uc,H(z, xH) does not contain variable z. However we adopt 
the expression Uc,H(z, xn) to unify the notation. U v , ~  (z, X) ,  UFB,* (z, X) , ( z ,  X), and 
UBH,~ (Z ,  X). are defined similarly. Notice that GT(z) = z for any MH message. First we 
define LH(XH) as the PGF for the number of other MH messages which arrive to the system 
during the same slot as the tagged MH message. It is given as 

The derivation of (4.10) is shown in Appendix (A.4). The first TH-cycle for the tagged 
message begins at  the next slot after its arrival and other MH messages in the queue at  that 
time correspond to those arriving to the system in the same slot as the tagged Mf- message. 
Therefore we have 

The tagged ME message has to wait until the vacation ends. To begin with, we define 
Z- and Z+ as the number of slots in a vacation already elapsed and remaining a t  the time 
the tagged message arrives. (The slot in which the tagged message arrives belongs to neither 
of them.) Let V*(^-, z+) be the PGF for Z_ and Z+, and we can derive it as 

The derivation of (4.12) is explained in Appendix (A.5). Substituting A d x H )  for z_ and 
zAH(xH) for 24- yields the joint PGF for the number of other MH messages which arrive to 
the system during the vacation excluding the slot in which the tagged M], message arrives 
and the number of waiting slots at  the end of the vacation. Taking into account the messages 
arriving in the same slot as the tagged message, we have 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



602 Y Sakai, Y Takahashi & T. Hasegawa 

For the tagged MfB message, the number of waiting slots at  the beginning of the first 
TH-cycle is zero. To find the number of other messages at  the beginning of the next slot after 
arrival, we define I I F B ( x H )  as the PGF for the number of MH messages a t  the beginning 
of FB-slots aside from the MH message which is going to be served. 

The MH messages which are in the system a t  the end of FB-slot consist of those having 
been in the system a t  the beginning of the FB-slot aside from the MH message which is 
going to be served, those externally arriving to the system in the slot and those internally 
arriving. The number of them is distributed as -TIFB(xH), AH(xH) and BH(xH). Thus we 
have 

From which we have U p s H ( ~ ,  xH) as 

FB- 
UFB,&, XH)  = (XH)LH(XH)BH(XH) = 

AH (XH) 

Note: lIFB(xH) is given by (3.7) in Section 3. 
For and M y ,  we can make an argument similar to those for M: and M y  

respectively. Then we get 

and 

Note: IIBH(xH) is given by (3.14) in Section 3. 
4.2.2. Initial Delay of the Tagged Normal-Priority Message 
By conditioning on the system state that an arriving MN message observes, we consider 
its initial delay in four cases. When MN message arrives to the system during C-period, it 
is classified as M$ message. We denote MN messages which arrive to the system during 
V-period as M:, FB-period as GB, GN-cycles as MS". 

In the following we derive the joint PGF for the number of waiting slots of the tagged 
M$ (G, W )  message and the number of other MN messages at the beginning of 
the first TN-cycle, UC,N(~ ,  X N )  (uV,N(z, X N ) ~  UFB,N(-), UGN,N(~ ,  xN))- For the tagged 

message, the first TN-cycle begins after FB-period initiated by MH messages which 
arrive in the same slot as the tagged M$ message ends. The number of such My messages 
is distributed as AH(xH). Therefore the number of waiting slots and the number of MN 
messages which arrive during the FB-period is distributed as A H ( e l  (ZAH(XH))) a t  the 
beginning of the first TN-cycle. We define h ( x N )  as the PGF for the number of messages 
which arrive to the system in the same slot as the tagged Mu message. LN (xN} is derived 
by the similar argument to (4.10) and it is given as 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Multi-class Feedback Queue under ROS 

Using (4.18), we have 

To find U v , ~  (z, xN), let us introduce the joint PGF VE(z, X^, xN) for the number of waiting 
slots and the queue size of each class a t  the end of a vacation. By a similar argument to 
(4.13), we have 

The number of waiting slots is increased by one and the number of Mpi messages is increased 
by the number distributed as AN(xN) in every FB-slot. Thus we substitute @l(zAN(xN)) 
for XH in VE(z, XH,  xN) and get 

Next we consider the tagged message. In this case, the numbers of MH messages 
and MN messages are distributed as XFB (xH, xN) at  the beginning of FB-period. The PGF 
for the number of waiting slots and other MN messages a t  the end of the FB-period, which 
corresponds to U F B , N ( ~  XN), is given by 

where OH1 is the mean number of slots the server spends before it serves all MQ messages 
in the queue on the condition that one MH message exists in the system at the beginning 
of a slot, lz=l. The derivation of (4.22) is described in detail in Appendix (A.6). 
For the tagged M$^ message, we can make a similar argument to (4.13) and (4.15), and 
have 

Note: HO"(xN) is given by (3.12) in Section 3. 
4.3. Unconditional Waiting Time 
In the following subsections, we derive the unconditional U(z, X) for MH messages and MN 
messages. To do so, we first obtain the probabilities that the system is in each period and 
cycle introduced in Section 2.1, at  a random point in time. Since we assume the number 
of MH and MN messages which arrive to the system in a slot is distributed identically and 
independently from slot to slot, we can derive the unconditional waiting time from the above 
probabilities. 
4.3.1. Mean Number of Slots in Each Period and Cycle 
We define CL(z) as the number of slots in C-period. C-period ends in two ways, 
[Case l] Upon messages arrivals(inc1uding the case Close-time ends a t  the same time) 
[Case 21 Close-time ends 
In Case 1, the number of slots in C-period is k when the following three events happens. 
There is no message arrives in the 1-st, - - , (k - l)-st slots in C-period, MH messages or 
MN messages arrive in the k-th slot and close-time does not ends by k-th slots in C-period. 
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On the other hand in Case 2 the number of slots in C-period is k when there is no message 
arrives in 1-st, . , k-th slots and close-time ends k-th slots. From above observations, we 
have 

Prob[the number of slots in C-period is 

where c; is the probability that the number of slots in close-time is I, $(&)'c(z) From 
(4.24), we have 

The derivation of (4.25) is in Appendix(A.7). The mean number of slots in C-period, Nc7 
is given as 

We define VL(z} as the number of slots in V-period. This is given as 

The derivation of (4.26) is in Appendix(A.8). The mean number of slots in V-period, Nv, 
is given as 

where Vm is the mean number of slots in a vacation, &v(z) The mean number of slots 
in FB-period, Nm is given as 

The mean number of slots in GN-cycles in one Basic-cycle, NGN, is given as 

where Qm{z) is the PGF for the number of slots the server spends before it serves all MH 
and MN messages in the queue on the condition that no message and one MN message 
exists in the system at  the beginning of a slot. This is given by the similar argument to 
@H,&),  

@;v,' (2) GN  AN ( @ ~ , i  (2))) BN (@;v,' (z)) 

The mean number of BN-slots in one Basic-cycle, NBN7 corresponds to the number of MN 
messages served in one Basic-cycle. This is given by NGN/QGN. Since GN-cycles consist of 
BH-slots and BN-slots, the mean number of BN-slots in one Basic-cycle NBH is given by 
NGN - NBN- 

We next consider NBC, the mean number of slots in one Basic-cycle. From the beginning 
of Basic-cycle to the beginning of the next Basic-cycle, the system state changes in six ways. 
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[Case l] C-period --+ GN-cycle --+ end 
[Case 21 C-period --+ FB-period -+ GN-cycle --+ end 
[Case 31 C-period --+ V-period --+ GN-cycle --+ end 
[Case 41 C-period --+ V-period --+ FB-period -+ GN-cycle --+ end 
[Case 51 C-period -+ FB-period --+ end 
[Case 61 C-period --+ V-period --+ FB-period --+ end 
We define p ~ c - 1 ,  , p ~ c - 6  as the probability that the system state changes in the corre- 
sponding manner described above. The probabilities p ~ c - b  , PBC-4 consist with 
P G N - ~ ,  , PGN-4: defined in Section 3, and pBc-5 and pBc-6 are given as 

Using these results, we have 

NBC = No + Prob[ V-period exists in Basic-cycle] Nv 

+ Prob[ FB-period exists in BasiC-CyCle]NFB + Prob[ GN-cycles exist in Basic-cycle]Nm 

4.3.2. System State at Random Points in Time 
Since those epochs when the system becomes empty, the beginnings of Basic-cycle, are regen- 
erative points, we can obtain the probabilities that the system is in each period and cycle at  
a random point in time, ProbfC-period], Prob[V-period], Prob[FB-period], Prob [GN-cycles], 
Prob[BN-slots] and ProbfBH-slots] as (sec. 6.4 in Heyman and Sobel 141) 

4.3.3. Differential Equation for Unconditional Waiting Time Analysis 
We can derive the unconditional U(z, X) for My messages, UH(z7 xH), as 
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and the unconditional U(z, X) for MN messages, UN(z7 xH), as 

U N ( ~ ,  X N )  = Prob[C-per iod]U~,~(z ,  XN)  + P r o b [ V - p e r i ~ d ] U ~ , ~  (z, xN) 
+ P ~ O ~ [ F B - ~ e r i o d ]  UFB,N (z, xN)  + Prob[GN-cycles] U G N , ~  (2, xN). 

(4.31) 

From (4.30), (4.31) and (4.9), we have the differential equation for the PGF for the number 
of waiting slots and the number of other messages a t  the beginning of the last GH- or GN- 
cycle, IH (-^H) and IN (z, X N )  , as 

and 

4.4. Mean Waiting Time 
In this section, we derive the mean waiting time for f i  messages. Differentiating (4.32) by 
XH and substituting z = XH = 1 yield 

Differentiating (4.32) by z and substituting z = XH = 1 yield 

Since we have U(z, xfi) explicitly, we can obtain the mean waiting time for MH messages, 
^-IH(z, QZ xH) ~zixHel ,  from (4.34) and (4.35). Higher moments of the waiting time are ob- 
tained in a similar way. 

5. Numerical Results 
In this section, we present some numerical results using commercially available mathematical 
software Maple V R4. 

Under the following scenario, we have plotted the mean waiting times for MH messages 
in Figure 6 and those for MN messages in Figure 7 as a function of the length of close-time 
C for different lengths of vacation V. 

@ AH(xH) = 0.9 + 0 . 0 2 ~ ~  + 0.02~: + 0.02~: + 0.02~; + O.O~XÂ¡, 
AN(xN) = 0.9 + 0 . 0 2 ~ ~  + 0 . 0 2 ~ 5  + 0 . 0 2 ~ 3  + O . O ~ X $  + O . O ~ X $  
a~ = O'N = 0.25. 
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In Figure 6, we observe that the mean waiting times for M y  messages get shorter as C 
increases in general but that it behaves in a different way for V = 1. This comes from the 
fact that our system is reduced to a priority system with neither close-time nor vacations 
under V = 1  and the length of close-time in no way affects the behavior of the system. The 
similar argument holds in Figure 7 except that the mean waiting times for M p f  messages 
are much higher than those for M H  messages. 

In Figure 8, we have plotted the mean waiting times for M H  messages as a function of 
C under the following scenario. 

l A N ( x N )  = 0.9 + 0 . 0 2 ~ ~  + 0 . 0 2 ~ &  + 0 . 0 2 ~ 5  + 0 .02~1 ,  + 0 . 0 2 ~ $  
l O.H = ON = 0.25 
l v = 1 0  

{ 
0.9 + 0 . 0 2 ~ ~  + o . o ~ x J ,  + 0 . 0 2 ~ ;  + 0 . 0 2 ~ 4  + 0 . 0 2 ~ 1  Case 1  

A H ( x H )  = 0.95 + 0 . 0 1 ~ ~  + 0.Olx$ + 0.01~:  + O . O ~ X ' &  + 0 . 0 1 ~ 1  Case 2  

0.99 + 0 . 0 0 2 ~ ~  + O . O O ~ X &  + O . O O ~ X &  + 0 . 0 0 2 ~ 4  + o . O O ~ X &  Case 3. 
We observe that the mean waiting times for M H  messages get shorter as C increases in 
general, and those for different AH ( x H )  are plotted in reverse order at  C = 1  and C = 1000. 
This comes from the fact in the following. When C is very large, the occurrence of vacations 
is rare. The mean waiting times get longer as the number of arriving M H  messages becomes 
larger. On the other hand, when C is not very large, the appearance of vacations is less 
rare. As the probability that no M y  message arrives in a slot becomes larger, the probability 
that close-time expires increases. This leads to frequent occurrence of vacation periods and 
increase in the mean waiting time. The similar phenomenon is also reported in [ g ] .  

In Figure 9,  we have plotted the mean waiting times for M H  messages as a function of 
C under the following scenario. 

l A H ( x H )  = 0.9 + 0 . 0 2 ~ ~  + 0 . 0 2 ~ 2  + 0 .02~:  + 0 . 0 2 ~ 4  + 0 . 0 2 ~ 5 ,  
l = OIN = 0.25 
e v = 1 0  

{ 
0.99 + 0 . 0 0 2 ~ ~  + 0.OO2xlf + O . O O ~ X ~ , ,  + 0 . 0 0 2 ~ 4  + O . O O Z X ~ , ,  Case 1  

A N ( X N )  = 0.95 + 0 . 0 1 ~ ~  + 0.0lx$ + 0 . 0 1 ~ 5  + 0 .01~1 ,  + o.OIX$ Case 2  

0.9 + 0 . 0 2 ~ ~  + 0.02x& + 0 . 0 2 ~ 5  + 0 . 0 2 ~ 4  + 0.02xL Case 3. 
Performance measures of high-priority-messages are not affected by the behavior of the 
normal-priority-messages in preemptive service discipline generally. In our system, however, 
close-time tends to be suspended by arrivals of M N  messages and vacation period less 
frequently occurs. Therefore, as the arrival rate of M N  messages becomes higher the mean 
waiting time for M H  messages becomes lower. 

Remark 
For a special case C = 0 ,  our numerical results are found to be coincident with that 

under FCFS in [l l] .  
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A. Appendix 
A.I. Derivation of equation (4.3) 
We begin with equation 

m m .  
l 

~ n , i + l  (k'7 1') = X X -pn,i(k, 1)Prob [ s ~  = k1 - k, ai + bi = Z1 - Z + l ] .  
k=O l = O  

l + l  ( A 4  

By summing up (A. l), we have 
m cm 

kl-k=O 11-l+l=O 
The 1.h.s of (A.2) equals Hn,i+l(~7 XT) and the r.h.s of (A.2) is considered in the following. 

On the condition si = k' - k, the P G F  for the number of MT messages which arrive in the 
i-th GT-cycle is given by (AT (XT) ) k f - k  B* (XT) . Therefore 

From (A.3) and (A.41, we have 

A.2. Derivation of equation (4.7) 
From equation(4.5) one can derive 

and 

Substituting (A.5) and (A.6) into (4.3) yields 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Multi-class Feedback Queue under ROS 

Summing up (A.7) for z 2 l and 

yields 

A.3. Derivation of equation (4.9) 
From (4.7) and (4.81, we have the following set of equations. 

6' 
I I ( ~ , x T )  + (xT - G T ( ~ A ( x T ) ) B ( x T ) ) - I I ( ~ , x T )  = U ( ~ , X T )  

~ ' X T  

We multiply a$-' ( l  - a T )  on the both sides of the i-th equation and sum up all the equations. 
Then we have 

Then (4.9) follows. 
A.4. Derivation of equation (4.10) 
We denote by L the number of other MH messages which arrive to the system during the 
same slot as the tagged MH message and by a~ the number of new arrivals of MH messages 
in a slot. From the idea of number-biased sampling, we have 

Prob[L = l ]  m ( l  + l)Prob[aH = l + l]. 
Therefore 

Finally we have 
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A.5. Derivation of equation (4.12) 
We define v ( x )  as the probability distribution of the number of slots in a vacation. 

m CO 

A.6. Derivation of equation (4.22) 
We define C3FB,qH,qN ( z )  as the PGF for the number of slots in FB-period on the condition 
that the number of MH messages is q~ and the number of MN messages is q~ at  the 
beginning of FB-period. This is given by 

By a similar argument to (4.13), UFB,N,qH,qN ( 2 ,  x N ) ,  the number of waiting slots of the 
tagged message which arrives to the system during this FB-period and other MN messages 
a t  the end of FB-period under this condition, is given as 

~ F B , N , ~ H , ~ N  X N )  

- - l { @ H , I  ( A N  ( x N ) )  { X N } ' N  - { @ ~ , l  ( Z A N  ( x N ) ) } ' ~  { x N } q ~  

q~ Q H , ~  A N ( ~ N )  - ~ A N ( x N )  
L N ( x N ) -  

Since probability which the tagged MN message arrives during FB-period having begun with 
q~ MH messages and q~ MN messages is directly proportional to qH X PrObLqH = l ,  qN = k ] ,  
we have 
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A.7. Derivation of equation (4.25) 

CL(z)  = Prob[the number of slots in C-period is k]zk  

1 - AH (())AN (0 )  
m k- l  m 

- ( A H ( o ) A N ( o ) ) ~  c l z k  + X ( A H ( o ) A N ( o ) ) ~ c ~ ~ ~ .  

AH (O)AN (0 )  /""l l=O k=O 

Here 

k - l  2 ( A ~ ( o ) A N ( o ) ) ~  c l z k  = z A ~ ( o ) A N ( o )  c ( ~ A ~ ( o ) A ~ ( o ) ) ,  
k=l l=O 1 - ~ A H  (())AN (0 )  

Finally we have 

A.8. Derivation of equation (4.26) 
We define u l  as the probability that the number of slots in a vacation is l .  The PGF for 
the number of slots in a vacation along with the event no message arrives in the vacation, 
V n o  arrival ( z )  is given 

v n o a r r i v a l ( z )  = ~ ~ A H ( ~ ) A N ( ~ ) ~ + ~ ~ ( A H ( o ) A N ( o ) ) ~ ~ ~  + ~ ~ ( A H ( O ) A N ( O ) ) ~ ~ ~  +" '  
= V(XAH(O)AN(O)) -  

Then the PGF for the number of slots in a vacation along with the event messages arrive 
in the period is given by 

Finally we have, 
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