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Abstract In this paper, we consider a TCP-like sliding window control with delayed information. We pro- 
pose a deterministic fluid-flow queueing system which represents a situation where many T C P  connections 
share a bottleneck link of ATM networks. We provide various properties of the transmission rate function 
(which is a function of time) to ensure that,  with the analytical model, we can compute the throughput 
performance of T C P  over ATM networks. Numerical results show that the synchronization of TCP window 
control yields heavy degradation of the throughput performance. Further we observe that the throughput is 
not a continuous function of the peak rate and there exist some regions where the behavior of the throughput 
has different characteristics. Such complex behavior of the throughput is caused by the complex behavior 
of the window control. 

1. Introduction 
The performance of T C P  (Transmission Control Protocol) over ATM (Asynchronous Trans- 
fer Mode) networks is of great interest because a great deal of traffic in future networks is 
expected to  utilize existing transport protocols such as TCP, and T C P  is the most widely 
used transport protocol in today's Internet and private networks [g]. Romanow and Floyd 
[7] have investigated the performance of T C P  over ATM networks without ATM-level con- 
gestion control, and compared it to  the performance of T C P  over conventional packet-based 
networks. They have shown that the throughput of T C P  over ATM networks can be quite 
low when cells are dropped at  a congested ATM switch. They have stated that  one of the 
reasons for the poor performance is the phenomenon that  the congested link is occasionally 
idle due to synchronization of the T C P  window control. The poor performance due to the 
synchronization has also been observed for T C P  over conventional packet-based networks 
in [g]. In this paper, we show not only that  the synchronization of T C P  window control 
causes heavy degradation of the throughput performance, but also that the behavior of the 
synchronization can be very complex. 

In the most of the past studies [l, 3, 6, 71, the performance of T C P  over ATM networks 
have been examined by simulations. Contrary to those studies, we develop an analytical 
model which represents a situation where many T C P  connections share a bottleneck link of 
ATM networks. The model is viewed as a deterministic fluid-flow queueing system which 
is composed of a finite-buffer queue and a number of sources. Sources use TCP-like slid- 
ing window control where information that  the window control utilizes is delayed. More 
precisely, we can interpret our analytical model to represent the following situation: (1) a 
segment (TCP packet) is fragmented into infinitesimal cells, (2) cells from different segments 
are completely interleaved at  the switch, (3) round trip times (RTTs) are fixed (4) retrans- 
mission timers ideally operate and the timeout is always set to 2RTT whenever a source 
sends data. Items (1) - (4) imply that the synchronization of T C P  window control can be 

© 1998 The Operations Research Society of Japan



Dynamic Beha vior o f  TCP-like Windo W Control 539 

happened so often. However, items (3) and (4) imply that the performance degradation due 
to the synchronization is restrained at  most. 

As you will see, our analytical model is described by a system of delay-differential equa- 
tions or can be regard as a discrete control of continuous-variable system. It is known that 
the behavior of such systems can be very complex [2, 51. Pecelli and Kim [5] have examined 
dynamic behavior of a feedback congestion control scheme, which is similar to a congestion 
control scheme for available bit rate (ABR) service in ATM networks. In particular, they 
have considered a simple network model using the feedback control under the presence of 
delays, which is composed of two sources and an infinite-buffer queue. Their model has 
been described by delay-differential equations. They have carried out extensive numerical 
experiments to find parameter values at  which orbits presenting dynamics of the feedback 
control exhibit some noticeable qualitative change. In the numerical experiments, they have 
shown the existence of complex asymptotic behavior depending on both parameter value 
and initial condition in an extremely sensitive manner. Finally, they have concluded that 
even such simple delayed-feedback control models can exhibit complex orbit structure. A 
similar observation has been made in Chase et al. [2], too. 

The remainder of the paper is organized as follows. Section 2 describes our model. In 
Section 3, we examine the property of the cell transmission rate and provide a theorem 
which guarantees that we can actually compute dynamics of the system. We also show 
an algorithm to compute the throughput performance as a function of time. Finally, in 
section 4, we provide some numerical results which show that the synchronization of TCP 
window control yields heavy degradation of the throughput performance. We observe that 
the throughput is not a continuous function of the peak rate and there exist some regions 
where the behavior of the throughput has different characteristics. The reason for this is two- 
fold. First, there exist parameter values at  which the behavior of the window control exhibit 
some noticeable qualitative change. For example, the synchronization of the window controls 
suddenly appears or disappear depending on both peak rates and initial conditions in an 
extremely sensitive manner. Secondly, the window control strongly governs the throughput 
performance. Thus, the complex behavior of the window control leads to the complex 
behavior of the throughput performance. 

2. Model 
We consider a deterministic fluid-flow model composed of a number of sources and a finite- 
buffer. We denote the buffer size by B (byte). We assume that the kth source cannot pour 
fluid over a peak rate p(k) (byte/sec). It takes the travel time of v̂  (sec) for fluid from the 
kth source to reach the buffer. On the other hand, fluid leaks from the buffer at  a fixed rate 
C (bytelsec) as long as fluid remains in the buffer. When the buffer is full, fluid poured 
into the buffer is lost. The kth source receives information about fluid sent from the source 
with dk) (sec) delay, which we call the delay time of the kth source. Received information 
is utilized by the window control. We assume that v(^ and dk) are nonnegative constants. 
We call + T(*) the round trip time (RTT) for the kth source. 

Before providing the mathematical formulation of the model, we roughly explain the 
behavior of a source and the window flow control considered in the paper. A source is 
operated under a sliding window control whose window size is variable and depends on the 
history of the system. The source continuously pours fluid into the buffer as long as the 
window control allows it to do so. When the source knows a loss, the source sets the timer 
which will expire after RTT, while pouring fluid (unless the window is exhausted). Note 
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that the source ignores the subsequent losses after a loss until it knows the lost fluid is 
successfully re-poured (as in the Go-back-N ARQ protocol). When the timer expires, the 
source stops pouring new fluid and re-pours fluid from the lost one as if it would be new 
fluid, and continues t o  pour fluid as described above. On the other hand, the window size 
is determined as follows. When re-pouring due to  a loss starts, the window size is set to 
the segment size L. The window control has a (variable) threshold which depends on the 
history of the window size. If the window size is smaller than the threshold, the window 
size increases exponentially, and otherwise the window size increases linearly, up to the 
maximum window size W. 

Note that  the above window flow control is similar to TCP, but not exactly the same. 
For example, our sources never use fast retransmit and fast recovery algorithms [4, 91 as loss 
recovery mechanism. In the rest of this section, we provide the mathematical formulation 
of the model. 

Let a^(t)  denote the transmission rate for the kth source a t  time t. a^(t) is given by 

where d+/dt denotes a right derivative and y^(t), which will be given later, denotes a real 
function of t ,  which represents the sequence number of fluid that the kth source pours a t  
time t. 

Now we consider the behavior of the queue. Let q(t) denote the amount of fluid in the 
buffer a t  time t. We assume that  q(t) is a continuous function of t. q(t) (t > 0) is then 

wit h initial condition 
q(0) = q o ( Q O  2 o), 

where [ S ] +  and [-l- denote max(0, -) and min(0, m ) ,  respectively. 
Let l@) (t) denote the loss rate for the kth source a t  time t. ^(t) is given by 

(otherwise) 
(2.3) 

Let M^(t)  denote the number of retransmissions by time t ,  where we regards the start  
of transmission as the first retransmission. We assume that Adk)(t) is a right continuous 
integer-valued function of t and differentiable except a t  the finite number of discontinuous 
points which correspond to the beginning epochs of retransmissions. M^{t) is then given 
by 

M^ (t) = M(*) (t -) + l (^I (t) = 0) , 
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d 
-M(') dt (t) = 0 (otherwise), 

with initial condition 
M(') (fp) = l, M(') (fp -) = 0, 

where T? 2 0 denotes the beginning epoch of the transmission of the kth source and 0(') (t)  
is a right continuous function of t associated with the timer. When 0(') (t) reaches zero, a 
retransmission for the kt\i source starts. Q(') (t) is given by 

d 
-0") d t  (t) = - 1 (otherwise), 

with initial condition 
0(" (t) < 0 (t < O),  

where X(') (t) denotes the state of the kth source, which is defined below. Note that 0(') (t) < 
0 implies that the timer is not set,. 

1 0 Â 

X(') ( t )  

/"\ l /"\ l T l l 

l l 1 0th RTT cycle 1st RTT cycle 2nd RTT cycle 

occurence of setting starting 
loss the timer retransmission 

Figure 1: typical behavior of x(')(t) (success) 

1 0 G 

( t )  

I t  1 1 Oth,RTT cycle 

occurence of setting starting occurence of setting starting 
loss the timer retransmission loss the timer retransmission 

Figure 2: typical behavior of x ^ ( t )  (failure) 

The state x(')(t) of the kth source takes zero during time intervals, each of which starts 
from an instant when the timer is set and ends at  the instant when the kth source knows 
the retransmission of lost fluid succeeds. In other cases, x(')(t) = 1. Thus, x(')(t) has a 
downward jump at  time t* when a loss happens at  time t* - r^), and it has a upward jump 
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a t  time t** when the retransmission a t  time t** - v^ - dk) succeeds. We assume ~ ( ~ ) ( t )  is a 
right continuous function o f t  and differentiable except at  the finite number of discontinuous 
points. ~ ( ~ ) ( t )  (t > 0) is then given by 

d 
- x ( ~ )  d t  (t) = 0 (otherwise), 

with initial condition 
x(k)(t) = 0 ( t  < 0). 

To help readers understand the behavior of ~ ( ~ ) ( t ) ,  we display typical behavior of x@)(t) 
in Figs. 1 and 2 (where RTT cycles will be defined later). Fig. 1 shows x(')(t) when the 
retransmission succeeds, while Fig. 2 shows x^(t)  when the retransmission fails once. Thus 
our model corresponds to the case that the timeout in TCP for the kth source is fixed to  
2 ( d k )  + ~ ( ' 1 )  (= 2RTT). 

Next we consider functions associated with the window control. The sequence number 
identifies the flow of fluid (which corresponds to the byte of data stream). We use the 
terminology sequence number in this paper, though the sequence number takes a real number 
in our fluid-flow model. Each source maintains two functions y^{t) and dk)(t)  associated 
with the sequence number, where ~ ( ~ ) ( t )  and ~ ( ~ ) ( t )  denote the sequence number of fluid 
being sent by the kth source at  time t and the smallest sequence number for transmitted 
but unacknowledged fluid, respectively. Further, each source maintains two functions w ( ~ )  (t) 
and ĥ  (t) associated with the window control, where ~ ( ~ ) ( t )  and h^(t)  denote a congestion 
window and, a slow start  threshold, (corresponding to the variables usually denoted by cwnd 
and ssthresh), respectively, for the kth source at  time t. ~ ( ~ ) ( t )  (t > 0) is given by 

d+ a(k) ( t  - (/k) - #l) (xW (t) = l), (t) = 
d t  { O (t) = o), 

with initial condition 
d k ) ( t )  = 0 ( t  < 0). 

Note that uW(t) is a continuous function of t. We assume that ~ ( ~ ) ( t )  is a right continuous 
function of t. yW(t) (t 2 0) is given by 

d+ ~ ( k )  (t) { p(k) ( d+ 
(dk) ( t )  < WW[t) + dk) (t)), 

d t  
d+ 

min p(k), - ~ ( ~ ) ( t )  dt  + -~(*')( t))  d t  (y(k)(t) = ~ ( ~ ) ( t )  + (t)), (2.5) 

wit h initial condition 
y(k)(t) = 0 ( t  ̂  0) 

We assume that  the congestion window w^(t) is a right continuous function o f t .  w^{t) is 
given by 

' ^~ 'Â¥~) ( t  = L ( ~ ' ~ ' ( t )  - ~ ' ~ ) ( t - )  > o), 
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(t) (W@) (t) < h@) (t)) , 
d+ (t) = 
dt p- 

L 
(h@)(t) < w@)(t) < W), 

, , 
(w@)(t) = W), 

with initial condition 
w(k)( t )=L ( t<O) ,  

where W and L (W > L > 0) denote the maximum window size and segment size, respec- 
tively. Note that, from the definition of y(k)(t), we have y(k) (t) 5 w(*)(t) + u^)(t) for all 
t. We assume that the slow start threshold h(k) (t) is a right continuous function of t and 
differentiable except at the finite number of discontinuous points. h^(t) is given by 

d 
-h'-^ dt (t) = 0 (otherwise), 

with initial condition 
h@)(t) = W (t < 0). 

We denote the average throughput at time t for the kth source by ~ ( ~ ) ( t )  (t > T;'). S^)(t) 
is given by 

k) t - (t) 
S( ( ) - - f , , k ) .  

Fig. 3 helps readers understand the dependency among the functions defined so far. For 
example, ~ ( ~ ) ( t )  is determined by its history, l@)(t - dk)) and MW(t - v@) - #l), while 
X@) (t) governs (t) and u ( ~ )  (t) . 

Figure 3: relation between functions 
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Finally we provide the definitions of retransmission cycles and RTT cycles of the kth 
source. We define the beginning epoch TP of the nth retransmission for the kth source as 

The open interval (TAk), TLYl) is called the nth retransmission cycle of the kth source. Next 
we define RTT (round trip time) cycles in a retransmission cycle. Let T \̂ denote the 
beginning epoch of the nth RTT cycle in the mth retransmission cycle of the kth source, 
where T$; is given by 

We call the open interval (TG, T$;+~) the (m, n)-cycle of the kth source. If T \̂ + v@) + 
r(') < - T:i1, the (m, n)-cycle is called complete cycle. If T \̂ + v^ + r@) > TS, the 
m ,  n)-cycle is called interrupted cycle. 

We end this section with some properties for retransmission cycles and RTT cycles, which 
are clear from the definitions of functions involved in those statements. 

Property 2.1 The length of any retransmission cycle of the kth source is greater than or 
equal to 2(v(') + d k ) ) ,  i.e., for any n 2 0, 

Property 2.2 In  each retransmission cycle, wm(t )  and y(k)(t) are right continuous and 
increasing functions of t .  Further, ~ ( ~ ) ( t )  and y(k)(t) are continuous except at T? 'S ( n  = 
0,1,2;-). 

Property 2.3 Any retransmission cycle includes at least two complete cycles. 

Property 2.4 xW(t) = 0 for T$& 5 t < T \̂. If xW(t) = 0 at some to 2 TX!, then 

xW(t) = 0 for to 5 t < T%,,,. In  addition, if ~ ( ~ ) ( t )  = 1, then there exists a positive 
number â‚ such that $ 0  < e < â ‚ ¬  then x^ ( t  + e) = 1. 

3. Analysis 
In this section, we will show several results for the properties of the transmission rate 
function a@)(t) .  First, we will show the right continuity of am( t ) .  Second, we will show 
that  the number of discontinuous points of a(^(t) in each (m,, n)-cycle is a t  most one. These 
results guarantee the existence and the uniqueness of a@)(t).  Thus we can actually compute 
a^{t), and hence dynamics of the system as well as the throughput. In this section, we also 
provide an algorithm to  compute the functions defined so far. In what follows, for simplicity, 
we use the notation 2) = zW(T^) and dk) m,n = #(T%) for any function z ( ~ ) ( - )  of t. 
3.1 Analysis of transmission rate function 

We first provide a proposition for values which a^ (t)  can take. Combining it with (2.2), 
we can see that  q(t) becomes a piecewise linear function of t. Thus, if we can determine q(t) 
a t  instants when the value of a(')(t) changes, we can determine q(t) a t  any t. 
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Proposition 3.1 a(') (t) takes either 0 or p(k) for all t, i. e., a(') (t) 6 {o, p@)} for all t .  

The proof is given in Appendix A.I. 
Next we provide a proposition for the right continuity of a(')(t). Combining it with 

(2.3), we can see that l^(t) is a right continuous function of t. This will guarantee the 
right continuity of other functions and their right derivatives as well, e.g., 0(^(t), dk ) ( t ) ,  

Â¥^u dt (t) and so on. 

Proposition 3.2 a(')(t) is a right continuous function oft. In other words, if a^(t) = p^), 
there exists a positive number c. such that if0 < c < eo, then a(')(t + c) = p("). Further, if 
a^(t)  = 0, there exists a positive number c0 such that if 0 <_ e < â‚¬ then a^(t  + c) = 0. 

The proof is given in Appendix A.2. 
Next we consider the number of discontinuous points of a^(t) in each (m, n)-cycle. The 

proposition will say that the number of discontinuous points of a^(t) is finite in any finite 
interval. Thus, combining with Propositions 3.1 and 3.2, it will guarantee the existence and 
the uniqueness of a(') (t) , and thereby enabling us to compute q(t) a t  any t.  

Proposition 3.3 In each (m, n)-cycle, a(')(t) has at most one discontinuous point. If 
a(') (t) has a discontinuous point to in an (m, n)-cycle, then a(') (to-) = p(') and a(') (to) = 0. 

The proof is given in Appendix A.3. 
We finally state a theorem, which is a direct conclusion of Propositions 3.1, 3.2 and 3.3. 

Theorem 3.1 a^(t) takes only 0 or p(') for all t and a^(t) is a right continuous function 
of t .  In each (m, n)-cycle, a@)(t) has at most one discontinuous point. If a(')(t) has a 
discontinuous point to in an (m, n) -cycle, then a(') (to-) = p(k)  and a^ (to) = 0. 

3.2 Discontinuous points of transmission rate function 
In the previous subsection, we proved that a(')(t) has a t  most one discontinuous point in 

each (m, n)-cycle. This subsection identifies the discontinuous point in each (m, n)-cycle. 

Theorem 3.2 a(')(t) has a discontinuous point to in an (m, n)-cycle such that a@)(to-) = 
p^ and a^(t0) = 0, if and only if the following conditions are satisfied: 

1. There exists i such that 

('1 2. There exists t l  such that /(^((l) = 0 and T \̂ < t l  < Tm,n+l. 
W 3. If = TG, there exists t2 such that f (t2) > 0 and T$L < t2 < Tm,n+l. 

to is then given by 
to = min {tl 1 15 tl ,  /(')(ti) = O} , (3.1) 

where f ('1 (t) = w ( ~ )  (t) + u ( ~ )  (t) - W (') (t) . 

The proof is given in Appendix A.4. 
3.3 Numerical algorithm to compute dynamics of the system 

In this subsection, we provide a numerical algorithm to compute functions which describe 
dynamics of the system. Let p$ denote the instant when a loss happens in the mth 
retransmission cycle of the kth source, i.e., 

1') = inf {t 1 T? < t ,  l('Â¥ (t) > O} . 
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Also, let NW denote the number of RTT 

where 1x1 denotes the largest integer that 
we define 

cycles by time TC: 

is not greater than X. For notational convenience, 

Note that the mth  retransmission cycle of the kth source contains a) + 2 RTT cycles, and 
among them, N ~ I  + 1 RTT cycles are complete, while only the last one, whose length may 
be zero, can be interrupted. In addition, the length of the interrupted cycle is given by E .̂ 
Thus we have 

rw1 = T f i  + dk )  + 2#. ( 3 e 4 )  

For n = 0 , .  - ,  @ + 2, we define a \̂ as 

Also, we define i f f )  as 

Now we rewrite Theorem 3.2 using 62-). 

Corollary 3.1 a^{t) has a discontinuous point to i n  a n  (m, n)-cycle such that ~ ( ~ ) ( t ( t ) ~ - )  = 

p(k )  and a^(t^\) = 0, if and only if the following conditions are satisfied: 

1. There exists tl such that f W{tl) = 0 and T$; + <%jn Ã§ < T%+,. 
2. If m,n = 0, then fg = W \̂ + U \̂ - yG > 0. 

t̂ m,n is  then  given by . 

fW = TW + ( W ( f e )  
m,n m,n wm,n+l um,n+l - Vim n ) / p ( k ) .  

We now show some expressions to keep track of the behavior of the system. We first 
provide a recursive expression to  compute W% in terms of 6%. From the results in the 
previous subsection, we obtain, for n = 0, . . . , NP + 1 , 

with initial condition 
( f c )  - 

w m , ~  - L- 
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21,) . (3.8) 

( f ~ )  _ ( f ~ )  ('1 ( k )  (n  > 0 ) ,  
Ym,n+l - Ym,n m , n P  (3.9) 

(fc) = (fe) (fc) 
^m,n+~  m,n + ̂.np 7 (3.10) 

(k )  _ (k )  
^m,o - Ym,o. (3.11) 

Further, since a:?,, = min(lg?,, - T*, U@) + T ^ ) ,  from (3.9),  (3.10) and (3.  l l ) ,  we obtain 

Using (3.5), (3.6)-(3.11), we can keep track of the behavior of the system during the mth 
retransmission cycle if we determine ~ $ 1 .  Note here that we can determine by tracing 
q ( t )  . We provide a summary of an algorithm to compute q( t )  . 
Step 1: Model Description 

Set the values of the number of sources, buffer size B, segment size L, maximum 
window size W, link capacity C and for all k, set the values of travel time U^) ,  delay 
time I-('), peak rate p(k) and the beginning epoch T$*) of transmission. 

Step 2: Initialization 
(k )  .- T $ k )  .- A Let t := 0 and q(0)  := qo, and for all k ,  let m(*) := 0 ,  n  ̂ := 0 ,  To,o .- -- To , 

.- L, and @) :E P$k)  := i f )  := T;k) := m. h?' := W ,  w ~ , ~  .- 
Step 3: Updating variables every RTT cycles 

(fe) ( k )  For k ,  Sm(k) ,n (k )  (3.5) 7 wm(k),n(k)+l  (3'6) and ( 3 . 7 ) 7  ~ s , ~ ( k )  (3.9),  
(k )  ('1 by(3.10)and(3.11),anda~,~),~(~)by(3.12). ^ m ~  , n ~ k )  

Step 4: Tracing q( t )  
Compute 

where arg mink denotes the argument k attaining the smallest value and 
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where, with an indicator function I ( X )  of event X, 

Step 

Step 

Step 

Step 

and for k ? K', 

B - q v )  
$W .- + t  ( E ~ P ( ~ ) $ : L , ~ ( ~ ) ( ~ O )  - C  # 0 ) '  

* -  Â £  ~ ( ~ ) & ! k l , ~ ( k )  ( t o )  - C' 
t o  (Et  P^'$$ ,n(k )  - c 0) 7 

- ( f c )  - ( f c )  by (3.2),  (3.3) and (3.4), respectively. and N m ( k )  t m ( k )  and Tm(k)+l  

6: End of RTT cycle 
(fco) 

If ' 0  = T m ( k o ) , n ( k o )  + y ( k ~ )  + T ( k ~ ) ,  let n (*~ )  := n ( k 0 )  + 1. 
7: End of retransmission cycle 
If to = ~2',, let m^) .- m ( * ~ )  + 1, n ( k 0 )  := 0 and m( 0 ) .= ' 

f(*0) .- .= 
m ( k ~ )  '- t m ( k o )  ' 

T ( k ~ )  miko)+i = +W, and then compute h z o )  by (3.8).  
8 Goto Step 3. 

4. Numerical Results 
In this section, we present some numerical results demonstrating the influence of the peak 
rate on the throughput of TCP. In the numerical results, we will observe that the synchro- 
nization of TCP window control yields heavy degradation of the throughput performance. 
Through all our numerical results, it is assumed that the segment size L is equal to 512 
bytes, the max window size W is equal to 65535 bytes and the link speed C is equal to 
150Mbps. 

Figure 4: Average throughput of TCP 

First, we show the influence of the peak rate on the throughput in homogeneous envi- 
ronments. We assume that 10 TCP connections share a buffer of ATM switch and qo = 0. 
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Further, we assume that all the RTTs of TCP connections are the same and the TCP con- 
nections are completely synchronized, i.e., T :  = 0, v̂  = 0, r̂ = r and p(k) = r C  for 
k = 1 , .  . . ,10. Fig. 4 shows the average throughput during 100 sec as a function of r, where 
D (msec) denotes the length of a RTT and B (byte) denotes the buffer size. For example, 
D = 6, B = 512000 indicates that the RTT is equal to 6 msec and the buffer size is equal 
to 512000 bytes. In Fig. 4, we observe the followings. With the peak rate, the average 
throughput increases linearly until r reaches 0.1, at  which the sum of the peak rates is equal 
to the link capacity. On the other hand, once r gets larger than 0.1, the average throughput 
decreases with the increase in the peak rate. In particular, it decreases more rapidly for 
larger D and smaller B. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
t (sec) 

Figure 5: congestion window (D=6,B=512000) 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
t (sec) 

Figure 6: congestion window (D=18,B=128000) 

We now examine reasons why the average throughput decreases as the peak rate increases 
when the sum of the peak rates is greater than the link capacity. For this purpose, we show 
the dynamic behavior of congestion window W (t) in Figs. 5 and 6. The settings are the 
same as those in Fig. 4. Note here that w(t) indicates the available window size, so that 
the maximum amount of data the kth source can actually transmit during a RTT of length 
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D is also limited by p ( k )  X RTT . Let 6 denote RTT X the peak rate measured in bytes: 
6 = D X 150 (Mb) 18  (b) X peak rate. With D = 6, 6 is approximately 13500, 27000 
and 40500 bytes when r is equal to 0.12, 0.24 and 0.36, respectively. With D = 18, 6 
is approximately 40500, 81000 and 121500 bytes when r is equal to  0.12 0.24 and 0.36, 
respectively. @ is also plotted in Figs. 5 and 6. 

0.1 0.1 5 0.2 0.25 0.3 0.35 0.4 
r 

Figure 7: Number of retransmissions 

In those figures, we observe that the attained maximum value of w(t) decreases with the 
increase in r. The reason is that the larger the peak rate, the more often packet loss occurs 
when the peak rate is large. As a result, w(t) cannot increase up t o  a large value when the 
peak rate is large. This causes the decrease in the average throughput with the increase in 
the peak rate when the sum of the peak rates is greater than the link capacity. To confirm 
that  packet loss occurs more often when the peak rate is large, Fig. 7 shows the number of 
retransmissions due to  packet loss during lOOsec as a function of the peak rate, where two 
cases D = 6, B = 512000 and D = 18, B = 128000 are considered. For both cases, we can 
see that the number of retransmissions increases with the the peak rate. More precisely, for 
the case D = 6, B = 512000, there is a rapid increase in the number of retransmissions with 
the peak rate until r gets to  0.14. Once r gets larger than 0.14, the increase becomes very 
slow. On the other hand, for the case D = 18, B = 12800, the interval of the rapid increase 
is very short. The increase becomes very slow until r gets to  0.16. However, contrary to  the 
case D = 6, B = 51200, there is a steady increase in the number of retransmissions when 
r is over 0.16. This steady increase causes the rapid decrease in the throughput with the 
increase in the peak rate when r is over 0.16 as shown in Fig. 4. 

We observe Figs. 5 and 6 in more detail. In those figures, we can see that  the attained 
maximum value of w(t) decreases with the increase in the peak rate more rapidly when the 
buffer size is small and the RTT is long. Further, we can observe that,  with D = 6 and 
r = 0.12, the maximum value of w(t) is greater than 0 = 13500 bytes. As a result, in the 
case D = 6, B = 512000, the throughput does not decrease rapidly with the increase in 
the peak rate as shown in Fig. 4. On the other hand, with D = 18, B = 128000, w(t) is 
completely below 6 even when r = 0.12. As a result, in the case D = 18, B = 128000, the 
throughput decrease rapidly with the increase in the peak rate as shown in Fig. 4. Thus, 
when the buffer is small and the length of a RTT is long, T C P  window control mechanism 
cannot prevent the throughput performance from degrading with the increase in the peak 
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rate. 

r 

Figure 8: Average throughput of TCP (T? = 0 (msec)) 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 
r 

Figure 9: Average throughput of TCP (TJ*) = 6 (msec)) 

Next, we consider homogeneous environments but not completely synchronized. The 
setting is the same in the previous case except the beginning epoch T $  of the transmission. 
We assume that TP = 0 (msec) for k = 1 , .  . . , 5 ,  T$*) = 6 (msec) for k = 6 , .  . . ,10, D = 12 
and B = 512000. Fig. 8 (resp. Fig. 9) shows the average throughput for a source with 
TY = 0 (resp. T$') = 6) during 100 sec as a function of the peak rate r.  In Figs. 8-9, 
we observe the followings. First of all, there is a qualitative difference between this case 
and the synchronized case D = 12, B = 512000 given in Fig. 4. When r gets to 0.3270, 
the average throughput suddenly increases. Once r gets larger than 0.3270, the average 
throughput shakes irregularly and heavily with the increase in the peak rate. 

We examine the reason why such complex behavior of the average throughput is observed. 
Figs. 10-11 show the dynamic behavior of W ( t)  for r = 0.3265 and r = 0.3270, respectively. 
We observe that the congestion window controls are almost completely synchronized in 
Fig. 10 (hence, broken lines for TY = 6 may not be seen in this figure), while they are 
not ~omplet~ely synchronized in Fig. 11. This sensitive dependency on initial conditions 
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0 1 2 3 4 5 6 
t (sec) 

Figure 10: congestion window ( r  = 0.3265) 

l , 1 

2 3 4 5 6 
t (sec) 

Figure 11: congestion window ( r  = 0.3270) 

yields a complex behavior of the average throughput. Indeed, though we do not provide 
figures because of limitation of space, as far as we examined, in the region r  E (0.1,0.3270), 
the window controls for T;*) = 0 and T? = 6 are almost completely synchronized while 
dynamics of the window controls are very sensitive to change of peak rates and complex in the 
region 0.3270 < r .  On the other hand, the window controls in Fig. 4 are almost completely 
synchronized a t  any peak rates. This suggests that if we can cancel the synchronization of 
window controls, the throughput performance may be improved in some regions. 

Finally, we focus on the heterogeneous case in which TCP connections with different 
RTTs share the switch. We assume that qn = 0, B = 128000, and for k = 1,. . . ,10, 
T? = 0, v(*) = 0, dk) = r and p ( k )  = rC. Further, we assume that T( * )  = 12 (rnsec) 
for k = 1 , .  . . , 5  and r(*) = 18 (msec) for k = 6 , .  . . ,10, i.e., the length D of RTT of five 
TCP connections is equal to 12 and that of others is equal to  18. Fig. 12 illustrates the 
average throughput during 100 sec. When r is not greater than 0.1, the above two groups 
share the switch in a fair fashion. However, once r gets larger than 0.1, the throughput of 
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25 c 

Figure 12: Throughput in the heterogeneous case 

TCP connections with long RTTs is heavily degraded with the increase in the peak rate, 
while the throughput of TCP connections with short RTTs is getting higher. In addition, 
when r gets to 0.2915, the average throughput of TCP connections with long RTT suddenly 
increases while that with short RTT suddenly decreases. Thus, the unfairness is somewhat 
improved in the region r > 0.2915. Once r gets larger than 0.2915, the average throughput 
shakes irregularly and heavily with the increase in the peak rate. 

We examine the reason why such complex behavior of the average throughput is caused. 
In Fig. 13 (r = 0.2910), we observe that the congestion window controls are completely 
synchronized, while they are not completely synchronized in Fig. 14 (r  = 0.2915). Note 
that w(t) in TCP connections with short RTTs increases more quickly than that in TCP 
connections with long RTTs because acknowledgments from destinations reach sources more 
quickly in the former case. Further, packet loss in both of two groups is likely to occur a t  
the same interval because they share the same switch. In fact, if both of two groups send 
packets when the overflow occurs, packet loss in both of two groups occurs a t  the same 
interval. This causes the synchronization of the window controls among two groups. For 
the above reasons, the attained maximum value of w(t) for D = 6 can be larger than that 
for D = 12, as shown in Figs. 13-14. Those observations suggest that if we can cancel 
the synchronization of window controls, the unfairness may be somewhat improved without 
degradation of the total throughput performance in some regions. 

A. Proofs 
A.1 Proof of Proposition 3.1 

From (2.4) and (2.6), we have 

a(')(t - - r(')) ( t )  < h(') (t), X(') (t) = l), 
d+ L 

p a(*:) (t - v(') - r(*:)) (W > ~ ( ~ ) ( t )  2 h(') (t), x ( ~ )  (t) = I), (A.I) 
d t  W (k)  (t) 

I 0  (X(') (t) = 0 or wW(t) = W). 

Thus, from (2.4) and (A.l), we have 
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t (sec) 

Figure 13: congestion window ( r  = 0.2910) 

0 1 2 3 4 5 6 7 
t (sec) 

Figure 14: congestion window ( r  = 0.2915) 

where 7 ( k )  ( t )  is given by 

L 
l+- (W > ~ ( ~ 1  ( t )  > h(k) ( t ) ,  dk) ( t )  = l ) ,  fit) = W ( t)  
1 (m ( t )  = W, (t)  = l ) ,  

( 0  ( X @ )  ( t )  = 0 ) .  

From (2 .  l ) ,  (2.5)  and ( A . 2 ) ,  it follows that for t > 0  

where 
f ( k ) ( t )  = w W { t )  + - p ( t ) .  ( A . 5 )  

From ( A . 4 ) ,  it follows that,  for any fixed t > 0 ,  if a W ( t  - v^ - dk ) )  takes either 0  or p ( k ) ,  

a ^ H )  also takes either 0  or p(k ) .  Thus, from (2 .1) ,  we see that a m ( t )  takes either 0  or p(k )  
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for 0 < t < v^ + r('). Using this and (A.4) recursively and noting (A.3),  we conclude that 
a@) ( t )  takes either 0 or p@) for all t .  
A.2 . Proof of Proposition 3.2 

From Proposition 3.1 and (A.4), we obtain 

Property A.5 f ( k )  ( t )  is right continuous at every t .  Further, f ( t)  is continuous except 
at ~ 2 ' s  (m = 0,1,2,---) .  

From Proposition 3.1, (2.5), (A.2), (A.4) and (A.5),  we have for t > 0 

with initial condition 
f "" ( t )  = L (t ̂  0) .  

From Property A.5 and (A.7),  we see that f ( t )  2 0 for all t .  Let dk)  (t)  denote the state 
of the window control for the kth source. # (t)  is given by 

We then have 

aW(t )  = (v@) (t)  E { I ,  2} ) ,  
0 (v@) (t)  â {3 ,4} )  . 

For notational convenience, we denote a transition from state i to state j by a transition ij 
(^Â = 1,2,3,4) .  

Lemma A.1 
1. If dk ) ( t )  = 1, there exists a positive number â‚ such that if 0 <: e < â ‚ ¬  then dk ) ( t+e)  = 

1. 
2. If dk ) ( t )  = 2, there exists a positive number â‚ such that i f 0  <_ e < â ‚ ¬  then r^)(t+e) = 

1 or d k ) ( t  + c) = 2. 
3. ~f dk )  ( t)  = 3, there exists a positive number eo such that i f 0  < e < <?Q, then dk)  (t+4 = 

3. 
( f c )  ( k )  4. ~f # ( t o )  = 4 at some to 2 Tqi, then dk ) ( t )  = 4 for to 5 t < T m i .  

PROOF: 
1. From Property A.5, it is clear. 
2. From Properties 2.4, A.5, (A.3) and (A.7) ,  it is clear. 
3. From Properties 2.4, A.5, (A.3)  and (A.7),  it is clear. 
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4. Since &)(to) = 0,  from Property 2.4, we see that dk ) ( t )  = 0 for to 5 t < T Z ~ , ~ .  

Thus, from (A .3) ,  we have 7^')(t) = 0 for to < t < ~ 2 , ~ .  From (A.7), (A.9)  and 

Property A.5, we see that f (''(t) = 0 for to 5 t < T::,, which completes the proof. 
R 

Thus, Proposition 3.2 follows from Lemma A.1, (A.8) and (A.9).  
A.3 Proof of Proposition 3.3 

To prove Proposition 3.3, we need several lemmas. 

Lemma A.2 If f ^ ( t 1 )  = 0 and f ( ' ) ( t 2 )  > 0 for some tl < t2 in  an (m,, n)-cycle, there 
exists some to (ti go < t2)  such that a^ ( t0  - v(') - r(')) = p('). 

PROOF: We assume that f ( ' ) ( t 1 )  = 0 and f ^ ) ( t 2 )  > 0 for some tl < t2 in an (m, n)-cycle. 
From Proposition 3.1, Property A.5 and (A.7) ,  it then follows that  there exists some to such 
that a(') (to - v(') - ~ ( ' 1 )  = p(*" and tl go < t2. U 

Lemma A.3 

1. If r^(t l)  = 3 and Â¥KW(t2 = 1 for some tl < ti in an (q n + l)-cycle (m, n 2 O ) ,  
then a,^(t)  has a discontinuous point to in the (m, n)-cycle such that a^ ( to - )  = 
0,  a(')(to) = p(k)  and tl - fl - r(') < to < t2 - v(') - r( ' ) .  

2. ~ f v ^ ( t l - )  = 3 and ~ r ^ ( t l )  = 2 for some tl in  an (m, n + l)-cycle (m, n 2 O ) ,  
then a(')(t)  has a discontinuous point to in the (m, n)-cycle such that a(k) ( to- )  = 0,  
a(') ( to) = p(') and to = tl - - ,-W 

PROOF: First we will prove the first part of Lemma A.3. Since dk ) ( t 1 )  = 3 and r(')(t2) = 1 
for some t1 < t2 in an (m, n + 1)-cycle (m,n 2 O ) ,  from (A.8) we have f ^ ( t l )  = 0 
and f ^ ( t 2 )  > 0. Thus, from Lemma A.2, there exists some t3 (tl  < t3 < t2) such that  
a(')(t3 - v(') - 71')) = p('). On the other hand, since 7dk)(t1) = 3, from (A .8)  we have 
a(')(t1 - v(') - ~ ( ' 1 )  = 0. From Propositions 3.1 and 3.2, we therefore concliide that a w ( t )  
has a discontinuous point to in the (m, n)-cycle such that  a^ ( to - )  = 0,  a ^ ( t o )  = p(') and 
tl - v@) - 71') < to < t3 - v(') - d k ) ,  which proves the first part. 

Next we will prove the second part. From (A .8) ,  we have a(') (tl - v(') - r(') -) = 0 and 
,g(') (tl - I /*Â¥ - r(*)) = p('). R 

Lemma A.4 If a ^ ( t )  has a discontinuous point t1 in an (m, n + l)-cycle (m, n >_ 0 )  such 
that a ^ ( t l  -) = 0 and a^ ( t l )  = p('\ a(')(<) has a discontinuous point to in  the (m, n) -cycle 
such that a(') (to-) = 0 and (((')(to) = p('). 

PROOF: If a ^ ( t )  has a discontinuous point tl in an (m, n+ l)-cycle such that  a^ ) ( t l  -) = 0 
and a(') ( t l )  = p('), from (A.8)  and (A.9), we see that one of the following state transitions 
must occur a t  t l :  transitions 31, 32, 41 or 42. From Lemma A.1, the transitions 41 and 42 
can not occur a t  t l .  On the other hand, from Lemma A.3, if the transitions 31 or 32 occur 
a t  t l ,  then a ^ ( t )  has a discontinuous point to in the (m, n)-cycle such that  a^( to- )  = 0 
and a(') ( to)  = p("). W 

emma A.5 If a( ')(t)  does not have a discontinuous point in  an (m, n)-cycle (m, n > 0 )  
such that a^ (to -) = 0 and a(')(t0) = p('), then a(') ( t )  has at most one discontinuous point 
in the (m, n + l)-cycle. Further, i f  a^ ( t )  has exactly one discontinuous point tl in  the 
(m+ + 1) -cycle, then a(^( t l  -) = p(*') and a(*') ( t i )  = 0 .  
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PROOF: To prove the first part of the lemma, we prove its contraposition. Suppose that 
a(')(t) has more than one discontinuous point in an (m, n+l)-cycle. Then, from Propositions 
3.1 and 3.2, a(') (t) has a t  least one discontinuous point in the (m, n + l)-cycle such that 
a(')(t0-) = 0 and a(')(to) = p('). Thus, from Lemma A.4, a(')(t) has a discontinuous point 
in the (m, n)-cycle such that a(') (to -) = 0 and a^) (to) = p('), which proves the first part. 

We next prove the second part of the lemma. From Lemma A.4, if a(')(t) does not have a 
discontinuous point in an (m, n)-cycle such that a@) (to-) = 0 and a(k) (to) = p('), then a(') (t) 
does not have a discontinuous point tl  in the (m, n + l)-cycle such that a(') (tl -) = 0 and 
a(') (tl) = p('). Note that,  from Theorem 3.1, there are only two kinds of the discontinuous 
points: (i) a(')(t0-) = 0, a(')(to) = p(k)  and (ii) a(')(t0-) = p('), a(')(t0) = 0. Therefore if 
a(') (t) has exactly one discontinuous point t l  in the (m, n + l)-cycle, a^ (tl -) = p(') and 
a(')(t1) = 0. R 

Lemma A.6 lf d k ) ( t )  = 0 for TF 5 to t < t l  5 TZl and /(')(to) = 0, then a(')(t) = 0 
and f ('1 (t) = 0 for to <: t < t l .  

PROOF: Since d k ) ( t )  = 0 for to 5 t < tl  and /(')(to) = 0, from (A.3) and (A.7), we have 
f(')(t) = 0 for to 5 t < t l .  From (AA), we therefore have d k ) ( t )  = 4 for to 5 tl. Thus, 
from (A.9), we obtain a@) (t) = 0 for to 5 t < tl . M 

Lemma A.7 a^(t) does not have a discontinuous point in an (m, 0)-cycle (m 2 0) such 
that a(') (to-) = 0 and a(') (ts) = p@). 

PROOF: From Property A.5 and (A.6), there exists a positive number â‚ such that if 
0 < e < â‚¬ f ( ' ) ( ~ $  + 6) > 0, and hence v^[T$ + e) = 1 and a(')(T$ + c )  = p("). Thus, 
from Lemma A.6 and Property 2.4, a(') (t) has at  most one discontinuous point in an (m, 0)- 
cycle. In addition, if a(*)(t) has a discontinuous point to in the (m, 0)-cycle, a@)(to-) = p(*') 
and a(') (to) = 0. B 

Proposition 3.3 now follows from repeated arguments with Lemmas A.5 and Lemma A.7. 
A.4 Proof of Theorem 3.2 

To prove the theorem, we need three lemmas. 

d+ d+ d+ d+ 
Lemma A.8 -u(')(t) + -dk) ( t )  is right continuous and -u(')(t) + -u/^(t) > 0. 

dt dt dt dt 
d+ d+ 

Further, -u(')(t) + -w(')(t) is decreasing in each (m, n)  -cycle. 
dt dt 

PROOF: The lemma follows from (A.2) and (A.3), Properties 2.2 and 2.4, and Theorem 
3.1. R 

d+ d+ 
Lemma A.9 -u(')(t) + -w(y t )  = 0 if and only if a(')(t - v(') - ~ ( ' 1 )  = 0 o r  *t) = 0. 

dt dt 

PROOF: From (A.2) and (A.3), it is clear. R 

We now prove the only if part of Theorem 3.2. From Theorem 3.1, one of the state 
transitions 13, 14, 23 or 24 must occur at to and no other transitions occur in an (m,n)- 
cycle. 

Assume that transitions 13 or 14 occur at  to in the (m, n)-cycle. From Lemma A.9, (A.8) 
and the assumption, $u(')(tO) + % w ( ~ ) ( ~ o )  = 0. Thus, the condition 1 is satisfied. Also, 
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from the assumption7 it is clear that  the conditions 2 and 3 are satisfied. Next we will show 
to is given by (3.1). In this case, from Lemma A.9 and (A.8) l we have f (to-) > 0, f (to) = 0 
and S U ( ~ ) ( ~ ~ )  + S W ( ~ ) ( ~ ~ )  = 0. Thus, it is sufficient to show that  there does not exist t l  
such that f (k)  (tl) = 0 and l 5 t l  < to. Suppose that there exists such tl .  Since f 5 t l ,  from 
Lemma A.8, we have S U ( ~ ) ( ~ ~ )  + S W ( ~ ) ( ~ ~ )  = 0. From Lemma A.9, this implies ~ ( ~ ) ( t ~ )  = 0 
or a(k)(tl - idk) - dk)) = 0. Further? from the assumption, we have f @)(-ll) = 0. Therefore 
we obtain a@) (tl) = 0. On the other hand, from Theorem 3. l, we know that  a(k)(t) = p@) 
for every t such that T$; < t < to. Those are contradictions. Therefore, there does not 
exist tl such that f@)(t1) = 0 and 5 t l  < to. to is thus given by (3.1). 

Assume that transitions 23 or 24 occur a t  to in the (m, n)-cycle. From Lemma A.g9 (A.8) 
and the assumption7 there exists t3 such that $ ~ ( ~ ) ( t ~ ) + $ w ( ~ ) ( t ~ )  = 0. Thus, the condition 
l is satisfied. Also7 from the assumption, it is clear that the condition 2 is satisfied. Note 

a t  z # ~ $ i i n  this case. To prove this9 we assume that  i = TZL From Lemmas A.8 and 
(k)  A.9? we have a@)(t - dk) - d k ) )  = 0 or x ( ~ I ( ~ )  = 0 for every t such that T$L 5 t < Tm,n+l. 

n the other hand, from the assumption, we have a(k) (to - dk) - dk)) = 0 and x ( ~ )  (to) = 0. 
hose are contradictions. Therefore? we conclude that + T$; in this case. Thus? the 

condition 3 is satisfied. Further, from Lemma A.9 and (A.8), to is given by (3.1). 
the if part. From Theorem 3.17 it is sufficient to  show a(k) (to-) = p(k) and 

(k)  consider the two cases separateIy: (i) TZ; < l < Tm,n+19 a r ~ d  (ii) = TA~L. 
In the case (i) , from Lemma A.8, we have $ z L ( ~ )  (t2) + (t2) = 0 for every t2 such that  

( k )  l 5 t2 < Tm,n+l. Since f (k)(to) = Q and 5 to from we obtain a@)(t0) = 0 from Lemma 
A.9? (A.8) and (A.9). To show a(k)(to-) = p(k), we consider the two cases separately: (a) 
l < to, and (b) = to. In the case (a)? from Property A.5, we have f(k)( t2)  > 0 for every t2 
such that 5 t2 < to. Thus, from Theorem 3.1, (A.8) and (A.9 , we have a(') (to-) = p@). In 1 

from Lemma A.8 and the condition l, we have % u ( ~ )  (to-) + g ~ ( ~ ) ( t ~ - )  > 0. 
at ,  from the assumption (i), to # ~ 2 ;  in this case. From Theorem 3-1, Lemma 

A.9? (A.8) and (A.9), we thus have a(k)(to-) = p(k). 
In the case (ii), from Lemma A.8? $ ~ ( ~ ) ( t 2 )  + g ~ ( ~ l ( t 2 )  = 0 for every t2 such that 

TZ; 5 t2 < T$;+~. Thus, from Lemma A.9, (A.8) and (A.9), we have a(k)(to) = 0. We 
next show a(k) (to-) = p(k). To do so7 we first show < to in this case. Suppose = to. 
We then have fgi = 0, On the other hand, from the condition 3, there exists t2 such 

that f@)(t2)  > 0 and T$; < t2 < T:;+~. From Theorem 3 - l 7  we see that those are 
contradictions, because a(k)( t)  has a discontinuous point t3 in the (ml n)-cycle such that 
a(k)(t3-) = Q and a(k)(t3) = p@). Thus, we have l < to in this case. From Property A.5? we 
then have f(k)(to-) > 0. Therefore? from (A.8) and (A09), we have a@)(t0-) = p@). 
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