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Abstract In the original DEA/CCR (Data Envelopment Analysis/Charnes, Cooper and Rhodes) compu- 
tation with n DMus (Decision Making Units), we cannot make do with solving n LP (Linear Programming) 
problems even to judge only whether each DMU is DEA efficient or not in using ordinary L P  solvers. This 
is because we must use two-phase optimization unless we have access to DEA software packages taking 
non-Archimedean infinitesimals into consideration. We must solve n Phase I LPs for all the n DMus plus 
Phase I1 LPs to see whether DEA inefficient DMus on the extended frontier are. This paper shows that, 
through solving nearly n LPs, we can achieve it if we use the DEA exclusion model instead of the standard 
DEA model, etc. We should note a merit of the DEA exclusion model for reducing DEA computation load 
as well. 

1. Introduction 
DEA (Data Envelopment Analysis) measures the relative efficiency of DMus (Decision Mak- 
ing Units). The original CCR (Charnes, Cooper and Rhodes) model to  obtain DEA effi- 
ciency score h*., 0 < h" 30 - l, for target DMU jo is expressed as follows, converted into the 
LP (Linear Programming) formulation (i.e., the input oriented multiplier form) [3, 41: 

t 

Maximize hjo = V '^^r Y r j o  
r= l  

m 

subject to V uixij0 = 1, 
i=l 

t m 

( 1 . 1 ~ )  

( l .  l d) 

where yrj = the amount of output r from DMU j ;  = the amount of input i t o  DMU j\ ur 
= the weight given to output r ;  ui = the weight given to input i; n = the number of DMus; 
t = the number of outputs; m = the number of inputs; e = a positive non-Archimedean 
infinitesimal; and 12; = the maximum of h,,, . 

The dual of problem (1.1) (i.e., the input oriented envelopment form) is as follows: 

Minimize p,, = 0 - e(x S: + V S:)  
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(0 unconstrained), 

where 0, A ^ ,  S:, S; = dual variables. Of course, the minimum p ;  = h; at an optimum. We 
solve this problem for DMU jo;jo = 1, . .. , n ,  to get DEA information. 

The set of all DMus is partitioned into the following four subsets: E, E', F and N [S, 
6, 101. Here, E is a set of DEA efficient DMus with Q* = 1, each of which is a vertex on 
the efficient frontier; E' is a set of DEA efficient DMus with 0* = 1, each of which is on 
the efficient frontier but not a vertex; F is a set of DEA inefficient DMus with Q* = 1, each 
of which is on the extended frontier; and N is a set of DEA inefficient DMus with 0* < 1, 
each of which is not on the efficient nor extended frontier. Letting n~ denote the number 
of DMus belonging to  subset E, etc., n = n E  + nw + m + n ~ .  We should here note that,  
in the general DEA analysis, TIE /  or n~ is considerably small as compared with n~ or n~ 
(i.e., n ~ t  g n p  0). Fig.1 shows the four subsets of DMus in the case of two inputs and 
one output for graphical simplicity. 

The DEA information that we have to get through DEA computation is various. This 
paper defines the three levels of DEA information as follows: Level 1. DEA efficiency score 
judging whether DEA efficient or DEA inefficient and the optimal weights U ;  v: for each 
DMU; Level 2. Level 1 information plus the reference set and combination coefficients for 
each DEA inefficient DMU belonging to subset N or F; and Level 3. Level 2 information 
plus which subset each DMU belongs to. Here, the reference set of a DEA inefficient DMU 
jo is a set of DMus j being efficient with the weights optimal to the DMU jo and the 
combination coefficients are \"- for j belonging to the reference set. We should note that 
DMus belonging to F as well as N cannot be elements of the reference set because they are 
not DEA efficient. In general DEA applications, Level 3 information would not always be 
needed. We would like to obtain DEA information of a certain level as occasion demands. 

Since DEA is LP-based, it should be available to any potential user or researcher with 
access to the ordinary LP solvers. However, a typical DEA application requires the solutions 
of a large number of LPs. We cannot make do with solving n LPs even to get only Level 1 
information, because we must solve problem (1.2) using two-phase optimization unless we 
have access to DEA software packages taking non-Archimedean infinitesimals into consid- 
eration. We must solve Phase I LP, problem (1.2) with objective "Minimize 0", for all the 
n DMus, plus Phase II LP, a modification of Phase I LP in which the objective "Minimize 
0" is replaced by 

Maximize ojo = S: + S; 

and 0 is fixed 0 = 1, in order to see whether DEA inefficient DMus on the extended frontier 
are. 

However, we can get Level 3 information through solving nearly n LPs without access 
to  DEA software packages but using the DEA exclusion model instead of the standard DEA 
model. Andersen and Petersen [2] proposed the DEA exclusion model, which allows DEA 
efficiency scores to exceed unity (i.e., the super-efficiency [g]) unlike the standard DEA 
model. It is said that there are a t  least three different motivations for the exclusion model 
[l]: i) to discriminate or to rank DEA efficient DMus [2] (see [7] for an application); ii) 
t o  obtain a nontruncated distribution of DEA efficiency to facilitate analysis of DEA score 
distributions [g]; and iii) to detect outlying DMUs in the comparison set. Besides these 
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motivations, this paper demonstrates that the exclusion model has a merit for reducing 
DEA computation load as well. 

In the next section, we show that Level 1 or 2 information requires nearly (n + nE) LPs 
and Level 3 information does nearly (n + 2nE) LPs in the standard DEA model case. The 
third section demonstrates that we can get Level 3 information through solving nearly n 
LPs by using the DEA exclusion model. Further, the exclusion model originally gives DEA 
information discriminating DEA efficient DMUs, peculiar to this model vs the standard DEA 
model. Therefore, we propose to always use the DEA exclusion model for DEA computation 
as one getting more DEA information through less computation than the standard DEA 
model. 

2. DEA computation 
We usually get DEA information by going through the following steps using the standard 
DEA model [5, 61: 

Step 1.1. Solving problem (1.2) with objective "Minimize 0" (i.e., Phase I LP) for each 
DMU jo of the n DMUs, we obtain the optimal solution 0*, A y ,  S:* and S,*, and the optimal 
weights U*,  v* as shadow prices of constraints (1.2b) and (1 .2~) .  We can here identify subset 
N comprising n~ DMus in terms of 0* < 1. The remaining (n - nN) DMus jo with 0* = 
1 would contain DMus belonging to subset E, E' or F. Note that Phase I LP expresses 
DMU jo7s radial projection point onto the frontier facet (i.e., reference point) in terms of 
a non-negative linear combination of DMus on the facet and slacks. DMus jo with 0* 
= 1 and no slacks (S? = S-* = O,r = l, ..., t , i  = l ,  ..., m) at this step might contain 
DMus belonging to subset F as well as subset E or E', because Phase I LP for DMU 
jo E F has multiple optimal extreme-point solutions and the solution with no slacks might 
happen to be obtained. If there happen to be DMus jo with O* = 1 and nonzero slacks 

S:* + E l l  S,* # (>)0], we can here judge that they belong to F .  Let nT be the 
number of such DMUs, then nT < np, so that nT would be very small (i.e., nT G 0). We 
should note that, for DMU jo E N or F identified at this step, DMus j of > 0 might not 
necessarily be elements of DMU jo's reference set because they might be DEA inefficient 
DMus on the extended frontier (see Step 1.3). 

Step 1.2. For each DMU jo of the (n - nN - nT = n~ + n ~ ,  + np  - nT) DMUs with 6* = 
1 and no slacks at Step 1.1, we solve a modification of problem (1.2) in which the objective 
is replaced by (1.3) and 0 is fixed at 0 = 1 (i.e., Phase I1 LP). We can here identify the rest 
of subset F comprising (np - nT) DMUs in terms of the maximum a] > 0, and obtain their 
reference sets and combination coefficients in terms of A; > 0 of this step. 

Step l .S. Suppose that the DMus belonging to subset F (identified at Step 1.1 or 1.2) 
are included in the set of DMUs j of X; > 0 for DMus jo N or F of Step 1.1. This means 
that DMU joys reference point is on the extended frontier, and note that the latter case (for 
DMus jo E F ) can also be occurred when plural DMus belonging to F are on the extended 
frontier (see Fig.1). Then, for each of such DMus jo, we solve a modified form of Phase 
I1 LP in which 0 = 1 is replaced by 0 = Q*, and obtain its reference set and combination 
coefficients in terms of XJ > 0 of this step. (We can also achieve this by solving a modified 
form of Phase I LP in which all A, for j E F are fixed at A, = 0.) Letting no denote the 
number of problems to be solved here, na would be very small (i.e., no 0). For each of 
the remaining (nN + nÃ - no) DMus jo E N and F, the DMus j of AJ > 0 at Step 1.1 form 
DMU 70's reference set. 
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Step 1.4. For each DMU jo of the (nE + "Â£1 DMus with CT-J = 0 at Step 1.2, we solve a 
modified form of problem (1.2), this time with the objective "Minimize A," and again with 
6 fixed at  0 = 1. If the minimum A J  = 0, then the DMU jo belongs to subset E', otherwise 
i t  belongs to  E. 

In this way, to obtain the DEA information, we must solve considerably many LPs. 
Note that discriminating DMus belonging to subset F (subset E') at  Step 1.2 (Step 1.4) 
requires nearly n~ LPs though n p  E 0 (nEj E 0). We must solve a total of (n + n~ + n ~ ,  + 
n p  - nT 2 n + nE) LPs to get Level 1 information throughout Steps 1.1-1.2; (n + n~ + 
n ~ t  + n p  + na - nT n + nE) LPs to get Level 2 information throughout Steps 1.1-1.3; 
and ( n  + 2nE + 2nE/ + n~ + no. - nT Z n + 2nE) to get Level 3 information throughout 
Steps 1.1-1.4. In fact, in a DEA case with 47 DMus, four inputs and four outputs [8], 
we could identify subset N comprising 21 DMus and nT = 0 at Step 1.1. Therefore, we 
had to solve 26 Phase I1 LPs at Step 1.2, and eventually found no DMus belonging to  F. 
That  is, we solved 73 LPs to get Level 1 information throughout Steps 1.1-1.2 and to get 
Level 2 information throughout Steps 1 .l-1.3 because na = 0. Further, if we would like to 
discriminate between subsets E and E', we must solve 26 more problems at  Step 1.4, i.e., a 
total of 99 problems throughout Steps 1.1-1.4. 

Eff ic ient  f ront ier  

1: - - - Extended front i er 

Figure 1. DMus belonging to the four subsets, reference point vectors onto the frontier 
facets, and their shifts. 
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3. Using the DEA exclusion model 
In the DEA exclusion model, the DMU being evaluated is excluded from the comparison 
set [l]. The exclusion model corresponding to model (1.2) is expressed as follows: 

Minimize q,, = c/) - e(x sf -l- S,) 

(c/) unconstrained), 

where 45 = variable used instead of 0 in model (1.2). This is different from (1.2) by only 
constraint (3. Id). Since the region of feasible solutions of the exclusion model is more strictly 
constrained than that of the standard model (1.2) by (3.Id), the minimum to Phase I LP 
c/)* > Q*. 

The minimum Q* for DMU jo is the ratio of vector length of DMU jo's reference point 
on the frontier facet to that of DMU jo itself. Since DMU j0 belonging to subset E, E' or 
F is on the frontier, the DMU itself and its reference point are identical. Therefore, Q* = 1 
for DMU jo E E, E' or F and Q* < 1 for DMU jo E N as mentioned in Sec.1. (See Fig.1.) 

On the other hand, the minimum c/)* has the similar implication to Q*. However, excluding 
the DMU jo being evaluated from the comparison set in the exclusion model, the frontier 
facets and the reference point on them shift for DMU jo E. For DMU jo E E', F or 
N ,  the frontier facets do not shift, so that the reference point does not change. Therefore, 

> 0* = 1 for DMU jo E E;  (f>* = Q* = 1 for DMU jo E E' or F; and 4>* = Q* < 1 for 
DMU jo c N [2]. 

Using the DEA exclusion model (3.1), we can get the DEA information by going through 
the following steps: 

Step 2.1. Solving problem (3.1) with objective "Minimize < y  (i.e., Phase I LP) for each 
DMU jo of the n DMUs, we obtain the optimal solution and shadow prices. We can here 
identify subset E comprizing n~ DMus in terms of c/)* > 1 and subset N comprizing n~ 
DMus in terms of c/)* < 1. The remaining (n - n~ - nN) DMus jo with < *̂ = 1 would 
comprise those belonging to subset E' or F. We can here judge that DMus j0 with <b* = 1 
and nonzero slacks belong to F. Since the DEA exclusion model does not allow to use 
DMU jo itself in the linear combination expressing its reference point, almost all DMus 
jo E F would have nonzero slacks at this step. Let nT/ be the number of such DMUs, then 
nT < n+ < n~ and n+ Z n~ (i.e., nd  E 0). But we should note that there is a little 
possibility that DMus with 45* = 1 and no slacks contain not only DMus jo E E' but also 
DMus jo c F in the case where plural DMus belonging to F are on the extended frontier 
(see Fig.1). 

Step 2.2. For each DMU jo of the (nE/ + n~ - nd) DMus with c/)* = 1 and no slacks 
at Step 2.1, we solve a modification of problem (3.1) in which the objective is replaced by 
(1.3) and 4 is fixed at  = 1 (i.e., Phase 11 LP). We can here identify subset E' in terms of 
the maximum 02 = 0 and the rest of subset F in terms of a". > 0, and obtain the reference 
set and combination coefficients for the (nF - n+) DMus jo E F. 
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Step 2.3. Like Step 1.3, for each DMU jo E N or F with Ay > 0 for j E F, we solve 
a modified form of Phase I1 LP of problem (3.1) in which <f) = 1 is replaced by <f) = d*. 
Through this step and Step 2.1, we can get the reference set and combination coefficients 
for the (nN + nT/)  DMus jo E N and F. 

We should here note the following: (1) O* for DMU jo G E with qY > 1 is O* = 1. Of 
course, Q* = <^>* for others. (2) The optimal weights U= associated with O* = 1 for DMU 
jo G E are calculated as U: = [shadow price of constraint (3.1b)I / d*; and v: = shadow 
price of constraint (3 .1~) .  This is because the dual of problem (3.1) is a modification of 
problem (1.1) in which constraint ( 1 . 1 ~ )  for j = jo is excluded. The shadow prices obtained 
at  Step 2.1 are the optimal weights as they are for DMU jo E E', F or N. (3) The step 
corresponding to Step 1.4 is not needed. 

We can get Level 1 information by solving (n + nE/ + nF - nT/ S n)  LPs throughout Steps 
2.1-2.2. This means (nE + nT/ - nT) , i.e., nearly n~ LPs reduction from Steps 1 .l-1.2. Since 
(nE/ + n-p - nT/)  would be very small, we may solve nearly n LPs to get Level 1 information 
by using the exclusion model. The number of problems to be solved at Step 2.3 may be 
considered equal to that at Step 1.3, so that we would solve (n + n ~ t  + n p  + na - nT/ 2 n)  
LPs to  get Levels 2 and 3 information throughout Steps 2.1-2.3. In the DEA case mentioned 
in Sec.2, since n z  = n p  = 0 (i.e., na = nT/ = 0) in fact, we could get not only Level 1 but 
also Levels 2 and 3 information by solving 47 (= n) LPs throughout Steps 2.1-2.3. 
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