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Abstract We consider a simple automatic warehousing sytem with a lot of storage spaces called slots 
in which only a single type of items are stored and retrieved. The purpose of this paper is to develop an 
efficient method for obtaining the marginal probability that each of the slots in the warehouse is full. The 
set of such probabilities for all the slots constitutes the spatial inventory distribution of the items in the 
system. This distribution, which we call the inventory distribution in short, enables us to evaluate key 
performance characteristics of the system such as the mean travel time of a crane for a single operation 
of storage or retrieval of items. Such characteristics cannot be obtained from the distribution of the total 
number of full slots alone. 

We assume that inventories are controlled by an (S, S) reordering policy, and that received items are 
stored from the closest open slot to an 110 point and retrieved items are chosen randomly among currently 
full slots. Furthermore the time between retrievals and the time between placing of order and receipt of 
items are exponentially distributed. Under these assumptions the system can be modeled as a Markov 
chain. If we use joint inventory levels of slots, the number of states of the Markov chain amounts t o  2m, 
where m is the total number of slots. Here we devise exact aggregation methods of the states to reduce 
the size of the Markov chain. By exploiting the special structure the total computational complexity for 
obtaining the inventory distribution is reduced to 0 ( m 4 ) .  

1. Introduction 
A typical automatic warehousing system has, among other things, racks with slots in which 
items are stored, a stacker crane which stores and retrieves items automatically, and a 
computer which controls the operations of the crane and the inventories as shown in Fig. 1. 
An order for items is placed according to a certain inventory policy. When items arrive at 
the warehousing system, they are assigned to pallets and then the pallets are put into the 
system from the 110 point. In the warehousing system items are controlled in the unit of 
pallet. The crane transports each pallet from the 110 point to one of open slots, and stores 
it in the slot. Retrieval of items will be done almost in the reverse order. 

The computer chooses a slot for storing or retrieving according to a certain rule. This 
rule as well as the inventory control policy based on assumptions on request for retrieval 
of items and delivery lags has a great influence upon the performace of the warehousing 
system. As we will show in Section 2.3 the distribution of the total number of items in the 
warehouse can be obtained rather easily. However, this is not sufficient to evaluate such key 
performance characteristics as the mean travel time of the crane for an operation of storage 
or retrieval of items. We must know also how items are distributed in the system with 
respect to the 110 point. We will consider the marginal probability that each slot is full, 
then the set of such probabilities for all the slots in the warehouse will constitute the spatial 
inventory distribution of the items in the system. We call this spatial distribution as the 
inventory distribution in short. Once the inventory distribution is known, the distribution of 
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travel time can be determined from the geometrical configuration of slots in the warehouse 
and the physical performance of the crane such as speed and load/unload time of items. The 
distribution of traveling time is a key operating factor for evaluation of overall warehousing 
systems, though for that purpose such performance characteristics as queue lengths of pallets 
of items yet to be stored into slots and unfilled requests for retrieval of items must be also 
taken into account. The overall evalution of warehousing system requires a comprehensive 
model-building process and will be a topic of for further research. In this paper we will devote 
ourselves to determination of the inventory distribution in the warehousing system operated 
by (s,S) policy in order to estimate the travel time distribution. Although the inventory 
distribution is very important in designing warehousing systems, all of the previous works 
on the related topics have not treated the inventory distribution adequately. In this paper 
we will show that the inventory distribution can be obtained with reasonable computational 
efforts by aggregation methods. 

In some previous works analytical expressions are obtained for travel time of a crane in 
automatic warehousing systems. Based on the expected travel times of the crane, Hausman, 
Schwarz and Graves [4] compared three storage methods, i.e., randomized storage, turn-over 
based storage and class-based storage. Another paper by Graves, Hausman and Schwarz[3] 
investigated analytical and empirical results for various combinations of alternative storage 
assignment rules and interleaving rules. In [4] and [3], they have assumed that the 110 
point is located at the corner of the rack and that the rack is square in time, i.e., the crane 
can get to the remotest point from the 110 point in the vertical direction and such point 
in the horizontal direction in the same length of time. Bozer and White [l] determined the 
expected travel time for alternative the 110 point locations and rack configurations. Hwang 
and Lee [2] and Chang et al. [5] further generalized the previous models by considering the 
acceleration and deceleration rates of an SIR machine. In these analyses an assumption is 
made that items are stored in the rack uniformly. This assumption makes the analysis easy. 
In real systems, however, this is not the case. There are open as well as full slots, and the 
distribution of full slots is not uniform. The assumption of uniformity gives rise to noticable 
errors. Thus the purpose of this paper is to establish an efficient method for obtaining the 
inventory distribution to  evaluate warehousing system more accurately. 

Noguchi and Suzuki [7] have taken into consideration the inventory distribution in an- 
alyzing the automatic warehousing system. In their system, n different types of items 
were assumed to exist and inventories were controlled by an ( S ,  S) reordering policy. They 
supposed that received items were stored from the closest open slot to the 110 point and 
retrieval was random among the same type of items. Under further assumptions of random 
arrival and random request for items this system can be formulated as a Markov chain with 
(1 + nlm states, where n and m are the numbers of item types and the slots respectively. 
It is almost impossible for practical sizes of m and n to solve the system of equilibrium 
equations for the steady state probabilities. Then they proposed an approximate solution 
method for this problem. 

In this paper we employ the same model as in [7] but restrict ourselves to a single type 
of items. Then we show that aggregation leads us to a smaller Markov chain which provides 
us the inventory distribution with less computational efforts. More specifically we focus 
our attention on whether slot i (i = 1,2, . , m) is full, the total number of full slots, the 
number of full slots among first z slots, and associated states, then we can get an aggregated 
Markov chain whose transition probabilities are all known. Although the model will have 
2m states if we use joint inventory levels of slots, the aggregation reduces the number of 
states to 0(m2) for each slot. In addition, we propose 0(m3)  time algorithm for obtaining 
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Figure 1 : Automatic Warehousing System. 

Figure 2: Global State Transition Diagram (m = 5, q = 3, r = 2). 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



An Aggregation for Inventory Distribution 495 

the steady state probabilities of the aggregated states by utilizing the structure of the linear 
equilibrium equations for each slot. As a result, our algorithm makes it possible to obtain 
the inventory distribution for all the slots in 0(m4) time. This gives a way to  analyze the 
inventory distribution in an automatic warehousing system with a practical number of slots. 

In Section 2 we will describe our model and assumptions and make preliminary analyses 
about the probability distribution of the total number of full slots and equilibrium equations 
for joint inventory levels of slots. There are two types of aggregation depending on the 
location of slots. In Sections 3 and 4 we will show those two aggregation methods and 
efficient methods for solving the aggregated systems of equilibrium equations respectively. 
Section 5 contains results of numerical experiments and Section 6 gives concluding remarks 
and comments on extensions. 

2. Model and Preliminary Analysis 
2.1. Assumptions and Notations 
The assumptions and notations in our model will be described in the following: 
(a) Only a single type of items are treated in our model. The quantity of items is counted 

in the number of pallets. 
(b) There are rn slots in the automatic warehousing system. To make the argument simple, 

the slots are assumed to be in a row and numbered from 1 (the closest slot to the 1/0 
point) to m (the remotest slot from the I/O point). 

( c )  Each slot can store one pallet of items. 
(d) Requests for retrieving one pallet come to this system according to a Poisson process 

with a constant rate p. When a request for retrieval comes, the items on a pallet are 
taken out from one of the full slots which is chosen at random. If there are no items 
in the system at that time, the request is lost. 

(e)  The inventory is controlled by an (S, S) reordering policy, i.e., if the inventory level 
decreases to r (reordering point), a reorder of q (reordering quantity) pallets of items 
will be placed, where r and q are prescribed constants. The lead time between placing 
of order and receipt of items is exponentially distributed with a constant parameter 
A. 

(f) As soon as q pallets of ordered items arrive at the system, each pallet is stored in the 
closest open slot to the 110 point. 

(g )  The number of slots is equal to the maximum inventory level, i.e., m = r + q. The 
reordering point is less than the reordering quantity, i.e., r < q. 

(h) The time required for storage or retrieval of pallets which consists of the travel time of 
the crane and the load/unload time of items at the 110 point and the slots is assumed 
to be zero, so we can neglect the waiting time for the crane. 

Some of the assumtions will be explained to clarify our standing point: Storing of each 
pallet of arriving items in the closest open slot to 1/0 point (assumtion(f)) is natural since 
it makes the travel time short. A pallet of requested items are assumed to be taken out 
at random from one of the full slots (assumption(c)). There are alternatives for this rule: 
One rule is of taking out a pallet from the slot to the closest to 110 point and another is of 
taking the oldest pallet in the warehouse. Those rules may either leave very old items in the 
warhouse or require history of inventories in the warehouse and time-consuming processing. 
A rule of assmption(c) is simple to operate and does not leave old items excessively. It may 
seem contradictory to neglect waiting time of the crane since we are interested in travel 
time of the crane. Remember that we are going to determine the inventory distribution in 
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the warehouse. If arrivals of ordered items and requests for retrievals of items are processed 
in FCFS (First Come First Served) basis,the inventory distribution of items at a moment 
of start of storage or retrieval of pallets does not depend on time required for storage or 
retrieval of pallets. This permits us to set time required for storage or retrieval arbitrarily. 
Hence as far as the inventory distribution is concened we can neglect the time required for 
movement of the crane and processing of pallets. Of course the time associated with crane 
must be taken into account to evaluate the overall performance of the warehousing system. 
2.2. Probability Distribution of Total Number of Full Slots 
Let X(t) be a random variable designating the total number of full slots in the warehouse 
at time t. From the assumptions on Poisson arrival of ordered items and random request 
for retrieval of items described in Section 2.1 the stochatic process X(t) is ergodic and 
Markovian. Let P(i) be the steady state probability that X(t) = i (i = 0,1, a , m). The 
system of equilibrium equations for P(i) can be easily obtained as follows: 

I AP(0) = /.#(l) (2 = O), 
(A + p)P(i) = pP(i + l) (1 5 S r), 
,uP(i) = pP(i  + l) (r < 2 q), 
pP(2) = \P(i - q) + pP( i  + l) (q 5 2 < m ) ,  
pP(m) = W(r) (i = m). 

After a little algebra, we can express P(i)'s only with P(q) as follows: 

(i = O), 

by using these equations and the condition 

we can get P(q)  at  first, and other P(z)'s can be obtained by (2.1) easily. Those probabilities 
along with other more detailed information will be used in Section 3.2 to compute the 
inventory distribution, i.e., the probability that each of the slot is full. 
2.3. System of Equilibrium Equations for Joint Inventory Levels for Slot 1 to 

m 
Let Xi(t) be a zero-one random variable denoting whether slot i is full (1) or empty (0) at 
time t and xi be a value which Xi(t) assumes (i = 1,2, - , m). It  is easy to see from the 
assumptions described in Section 2.1 that the stochastic process {(Xl (t) , X2 (t) , , Xm (t))} 
is ergodic and Markovian. Let P(xl, xi, - , xm) be the stationary joint probability for 
inventory levels for slot 1 through slot m , namely, 

We assume that P(xi, xi , .  , xm) = 0 for impossible states, i.e., the states for which some 
xi is neither 0 nor 1. The system of equilibrium equations for the warehousing system can be 
written down referring to, for example, Fig. 2 in case of m=5, q=3, and r=2. The equations 
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are of different forms depending on the total inventory level as follows: 

where 

and ei (i = 1 , 2 , - - - , m )  is either 0 or 1. 
We will briefly explain the equilibrium equations (2.2). For 1 5 fm 5 r ,  both an arrival of 
ordered items and a request for retrieval cause trantiotion out of the state (xi, x2, , xm} 
with the rates \p and pp respectively, where p is the stationary probability of designated 
state. In addition, transitions from (m - fm) states with the inventory level fm + 1 into 
the state (X\, x2, , xm) will occur due to a request for retrieval with the rates pi/(fm + 1) 
since the pallet is retrieved at random among (fm + 1) full slots. For r < fm < q, no 
transitions occur associated with arrival of ordered items. The transition rate out of the 
state (x1 , x2, , xm) is pip and transitions from the states with the inventory level fm + 1 
into the state (xl ,x2,---  ,xm) are the same as the case 1 < fm < r .  For q < fm < m the 
situation is the same as in the case r  < fm < q except that there exist transitions from 
the states with the inventory level (fm - q) into the state (xi, x2, - - , xm) due to arrival 
of ordered items with the rate \p. For For q <, fm < m, we have expressed the situation 
concretely that q arriving pallets have been put into empty slots up to slot m. The case 
fm = m is the same as the case q < fm < m except that there is no transition into the state 
(xi, x2, , xm) due to retrieval of items. 

The system of equilibrium equations has 2m unknown variables. If we can solve it, we, 
of course, obtain the marginal probabilities by 

But it is practically impossible, because real systems have more than thousand slots in some 
cases. Therefore we need some devices to overcome this difficulty. 

3. Exact Aggregation Method I 
3.1. Aggregation for Slots 1 to q, and m 
In this section and next, we will propose an exact aggregation method for the inventory 
distribution, i.e., the probability that each of the m slots in the warehouse is full. This 
method does not give the probabilities for all the slots at the same time, but gives the 
probability for each slot individually. We will reduce the computation time drastically by 
aggregating associated states of the Markov process so as to keep the necessary information 
for obtaining the probability that the slot is full. We use two kinds of aggregation depending 
on which slots we are working on: The one is for obtaining the probability that each of slots 
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1 q and m is full and the other is for the rest of the slots. In this section, we will explain 
the former. 

Our purpose is to establish an efficient method for computing the marginal probability 
Pr(X i ( t )  = l )  ( i  = l ,  - - , m ) .  

Let F,(t) be a random variable designating the total number of full slots in slot 1 through 

and let fi be a value which Fi ( t )  assumes. We will introduce a stochastic process { (X i  ( t )  , Fm ( t ) )  } 
with 2m states for each i to reduce the number of states of the original Markov process. 
Note that there do not exist states ( 1 , O )  and (0, m )  for each i. Associated with each of 2m 
states (xi ,  fÃ£ define a set Si(xi, f m )  as 

then 

k=O k=l 

will be a partition of the set S of all the 2m states of the original Markov process. There exists 
a one-to-one correspondence between a state (xi ,  f m )  of the stochastic process { (X i  ( t )  , Fm ( t ) )  } 
and a set Si(xi1 f m )  of states of the original Markov process. 

The stochastic process { ( X i ( t ) ,  Fm(t))}  is also a Markov process for 1 5 i  < q and z = m. 
In order to show this, first define the transition rate from a state X = (x i ,  X ^ ,  , X ~ ) E S ~ ( X ~ ~  f m )  

to a set of states &(xi, fh) based on the transition rate p(x, X' )  from a state X to a state 
X' = (X', , X , ,  - , X') of the original process as 

Essentially due to the lumpability theorem of a Markov chain of Kemeny and Snell [4, p.1241, 
the stochastic process { ( X i ( t ) ,  Fm(t))}  is a Markov process if and only if for every pair of 
sets Si(xi,fm) and Si(xi1 fh) , p(x, Si(x',, f ; ) )  has the same value for every x&Si(xi, fm)  

This common value will be the transition rate from a set of aggregated states Si(xi, f m )  to 
another set Si (x i ,  fÃ£ or equivalently from a state (xn f m )  to a state ( X ;  f;)  of the stochastic 
process { (Xi  (t), Fm (t)  ) } 

Now we will show that p(x, Si(x<, fh)) has the same value for every x&Si(xi1 f m ) -  Con- 
sider a state x&Si(xi, f m )  and the set of states S, to which transitions are possible in one 
step caused by retrieval or receipt of items from X .  If fm < r receipt is possible and S, has 
a single element X' and the rate of transition is A since received items are stored from the 
closest open slot to the 110 point (see assumption (f)). In case of i < q, x1&Si(l1 fm + q) is 
the only state after receipt of items for any x&Si(xi, f m ) ,  but for m > i > q there exist y' 
and z' such that 

yl&Si(O,fm+q) and z1&Si(l1fm+<f) 

are the states right after receipt of items. This means that the transition rate p(x,S,  (0, fm + 
q ) )  does not necessarily have the same value for every xeSi(O, fm}. This implies that the 
stochastic process { ( X i  ( t )  , Fm ( t ) )  } is not Markovian if m > i > q, but it will be Markovian if 
i <: q and the transition rate defined in (3.1) has a common value for transitions by retrieval 
of items. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



An Aggregation for Inventory Distribution 499 

Now we will consider transitions caused by retrieval of items. If fm # 0, retrieval is 
possible and items in one of full slots will be taken out at  random. There are fm states in 
Sx in this case. We will consider two sub-cases, i.e., the cases Xi = 0 and xi = 1. In the 
former case all the possible transitions are into one of the states in Si(O, fm - 1) and 

for all xeSi(O, fm) because of Assumption (d). In the latter case two kinds of transitions 
are possible: One is a transition into one of the states in Si(O, fm - 1) and the other is a 
transition into one of the states in Si(l, fm - 1). Because of Assumption (d) again, we have 

P(X, Si(0, fm - 1)) = p/ fm and p(%, &(l, fm - 1)) = (fm - 1)p,/fm 

for all x&Si(l, fm). We have shown that the transition rate (3.1) has a common value for 
every xeSi(xi, fm) for transitions by retrieval of items. The discussions above now have 
established that the stochastic process {(Xi((), Fm(t))} is a Markov process if >' 5 q. We 
denote by Pi(,xi, fm) the steady state joint probability distribution for the inventory level of 
slot i and the inventory level of the system. Then we can derive the system of equilibrium 
equations for fi(xi, fm). There is, of course, one equation for each state (xi, fm). The 
equilibrium equations for Pl(xl, fm) are derived as a typical example in the following by 
classifying them with the value of fm. The system of equations are written down in the 
following in the descending order of fm since those equtions are referred to in this order 
later in this paper: 

' APi(0, r) + APl(1, r) - p,Pl(l, m) = o (fm = m), 
APl(0, fm - q) + APl(1, fro - q) 

+a(fm)~Pl(l, fm + 1) - pPl(1, fro) = 0 (q < fm < m), 
a(fm)~Pl(l, fm + 1) - /̂ Pl(l, fm) = O (r < fm < 4, 
a(fm)Fi(l, fm + 1) - (p  + A)Pl(l, fm) = o (l 5 fm < r), 
b(fm)/̂ l(l, fm + 1) + /̂ P1 (0, fm + 1) 

-/̂ Pl(O, fm) = 0 (r < fm <m), 
b(fm)~Pl(l, fÃ£ + l) + pp1 (0, fm + 1) 

-(P + A)Pi(o, fm) = 0 (1 5 fm 5 r), 
/iPi(O, 1) + /iPi(l, 1) - APl(O, 0) = 0 (fm = O), 
K 2 0  ̂(O, fm) + 27n=i Pl(1, fm) - l = 0, 

Since the state tranisitions in the aggregated Markov process are similar to those in the 
original process explained in detail in Section 2.3, we will explain only the case q < fm < m 
here. Transitions into state (1, fm) by receipt of items are from states (0, fm - q) and 
(1, fm - q) respectively both with transition rate A which correspond to the first and the 
second terms. A transition into state (1, fm) by retrieval is from state (1, fm + 1) with the 
rate p((1, fm + l), (1, fm)) = fml^/(fm + 1) = a(fm)/' which corresponds to the third term. 
A transition out of this state (1, fm} is possible only by retrieval of items. The transition 
rate is p, from (3.2) which corresponds to the last term. We will show an example of the 
aggregation for the model with m = 5, q = 3, and r = 2. The state transition diagram 
of the system before aggregation is shown in Fig. 2 which corresponds to the equilibrium 
equations (2.2). After aggregation the state transition diagram for the states (xi, fm) will 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



500 H. Yamashita, H. Ohtani & S. Suzuki 

be as shown in Fig. 3 which corresponds to the first seven equations of (3 .3) .  In general 
the state transition diagram for the states ( x i ,  fm) will be as shown in Fig. 4. (3.3) is a 
system of linear equilibrium equations with 2m unknown variables. The number of variables 
is much less than that in (2 .2) .  

Among m variables X i  ( t )  , a , Xm ( t )  , q variables X i  ( t )  , - , X,  ( t )  are the random vari- 
ables which have the same characteristic as Xi(^). We can apply the same aggregation 
method as above to each of slots 2 q and exactly the same system of equilibrium equa- 
tions as (3 .3)  can be obtained for PAX^ fm)  for each 2 .  This means that the probability that 
slot 2 is full is the same for i  = 1 , 2 ,  * - , q. We can see it intuitively because of the rules 
for storage and retrieval in Section 2.1. The states of slot m can be described similarly to 
those of slots 2 through q and the same type of aggregation can be applied. The system of 
equilibrium equations for Pm(xm, f m )  is as follows: 

which is also a system of linear equilibrium equations with 2rn unknown variables. 
3.2. Solution Method for P ( X i ( t )  = 1) ( 2  = 1 q and m) 
Systems of equations (3.3) and (3.4) both have 2 m  unknowns. These equations can be solved 
with any of standard methods for a system of linear equations. But we will develop a more 
efficient method by making use of the special structure of the equations. Once P i ( l ,  fm)'s 
are known the marginal probability that each of slots 1 q and rn is full can be obtained 

m 

PT ( X i  ( t )  = 1)  = Pi ( l ,  fm) ( 2  = 1 q and m ) .  (3.5) 
fm=l 

Now we will present a method for solving Equations (3.3) and (3.4). This method will 
use the distribution P ( i )  of the total number of full slots described in Section 2.2. For 
this purpose we will transform the first four equations of (3.3) as follows observing that 
P(2) = Pl(O, i )  + P l ( l ,  i ) :  
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Figure 3: State Transition Diagram for States (xi, fm )  (m = 5, q = 3, r = 2). 

Figure 4: State Transition Diagram for States (xi, fm).  
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NOW Pi ( l ,  fm), fm = m, m - 1, . - , l ,  are obtained recursively. Similarly, we can transform 
the first four equations of (3.4) to 

. . 

A  j P  
Pm(!, q + 1) = [(q + l)/(! - - E;;; --(-)'-̂+l 

P q + j  \ + P  
)/mlP(m)7 

The third and fourth equations of (3.6) are obtained from the fourth and third equations 
of (3.4), respectively. The rest of the equations of (3.6) are derived by substituting those 
equations into the second equation of (3.4). We can obtain Pm ( l ,  fm) ( fm = l , , m) from 
(3.6). 

Now we can obtain &(l, fm) (fm = 1, , m) for z = 1, , q and m with much less effort 
than solving (3.3) and (3.4) by standard numerical methods such as Gaussian elimination 
method. The computational complexities for solving them are dominated by those for 
obtaining fi(xi, fm) for 2 = q + l - m - 1 as we will see in Section 4.2. 

4. Exact Aggregation Method I1 
4.1. Aggregation for Slots q + l  to m -  1 
Exact aggregation of 2rn states S of the original Markov process into 2m states Si(xi7 fd 
was successful to obtain Pr(Xi(t) = 1) for i = 1, 2, , q, and m. The Markov process thus 
obtained was {(Xi (t), Fm(t))}. This kind of aggregation will fail for Ã = q+ 1, q+2, , m- l .  
The reason for this was briefly explained in Section 3.1. We will examine the situation again 
and propose another method of exact aggregation which enables us to compute Pr(Xdt)  = 
1) for i = q + 1 , q + 2 , - - . , m -  1. 

Suppose that q < z < m, fm <: r, and Xi(t) = 0, then receipt of items is possible in 
the state (0, fm) in the Markov process {(Xi(t), Fm(t))}. On receipt of items a transition 
occurs and the new state will be (1, fm + q) if fi > i - q and (0, fm + q) if fi < 2 - q. The 
lumpability condition fails to hold for such a case since the state does not have information 
on Fi(t) . We need more information to get Pr (Xi (t) = 1) for i = q + 1, q + 2, , m - 1. To 
overcome the difficulty we will introduce a stochastic process {(4 (t) , Fm (t))} or equivalently 
{ (&(t), Gi (t))) where Gi(t) is a random variable defined by 

The number of states of the stochastic process is less than (m2 + 4m + 4)/4 (since K(t)  and 
Gi(t) have (i + 1) amd (m - i + 1) states respectively) which is still much smaller than that 
of the original Markov process. 

We will show that the stochastic process {(Fi (t), Gi (t))} is Markovian almost in the same 
way as we proved that {(Xi(t), Fd t ) )}  was so. First we will define the sets of states by 
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where gi is a value which Gi( t )  assumes. All the sets T , ( f i ,  gi)  for each i clearly constitutes a 
partition of S. Define the transition rate from a state x&T,( f i ,  gi)  to a set of states T , ( f i 7  g:) 

If we can show that for every pair of sets T,( fi ,  g,) and T, ( f < ,  g;) ,  the transition rate has the 
same value for every x & Z ( f i ,  g i ) ,  then an aggregated Markov process can be constructed. 
This common value forms the transition rate from an aggregated state T , ( f i ,  g i )  to another 

( f : ,  g:) of the aggregated Markov process or equivalently from a state ( f i ,  gz)  to another 
state ( f i ,  g;) of the Markov process { ( F i ( t ) ,  G i ( t ) ) } .  

We will show that the transition rate defined by (4 .1 )  actually has a common value. 
First let xeT,[fi, 9,). If fi + g,(= fm) - < r ,  then a transition from X due to receipt of items 
is possible with the rate A. Every possible state of the original Markov process after this 
transition belongs to  the state G(/. ,  g:) , where 

and the transition rate in (4 .1 )  has the same value A for every x & 3 ( f i ,  gi}. 
If fi  + gi{= fm)  # 0 ,  then transitions from a state X&% ( f i ,  gi) due to retrieval of items 

are possible into states in z(fi - 1 ,  gi)  and Ti{f^ gi - 1 )  whose transition rates 

are the same for every x & 5 ( f i 7  gi)  and the sum is equal to p. 
From the above discussion the stochastic process { ( F i  ( t ) ,  G, ( t ) ) }  has been proved to be 

Markovian. We will denote by ( f i ,  gi) the stesdy state joint probabilities for the inventory 
level of slots 1 i and that of slots i + 1 N m. Then we can derive the system of equilibrium 
equations for c( f i ,  g i )  using the transition rates obtained above. It will be as follows: 

where 

= ( f i  + l ) / ( f m  + l ) ,  tGm = (gi + l ) , ( fm + l), 
and P/(*, *)'S are assumed to be zero for undefined states. The state transition diagram for 
the states ( f f  , g^) is shown in Fig. 5 .  Since each of the equations of (4.5.1)  (4.5.6)  can be 
derived in almost the same way, we will explain only the first equation which is for fi = i. 
We will consider the transitions into state ( i ,  g,) as well as the transitions from the state. 
The transitions into state ( i ,  gi)  are possible by both retrieval and receipt of items. Since the 
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first z slots are full after transition, retrieval must be from one of the slots i + 1, i + 2, , m. 
This means that a transition is from state ( fi, gi + l )  of the aggregated Markov process whose 
transition rate is tifm = (gi + l)/( fm + l) from the second equation of (4.4) which correspond 
to the first term. The transitions into state (i, gi) due to receipt of items are possible from 
a set of aggregated states, i.e.,(; - q + gi, O ) ,  (z - q + g, + 1, l) ,  , (z - q + 1, g, - l), and 
1 - q,gi) acccording to equations (4.2) and (4.3). Then we will get the second term of 
(4.5.1) because each transition rate is A. Since i > q,  transitions from the state are possible 
only by retrieval of items and the sum of these transition rates is p as was observed above 
which corresponds to the last term. 

i - q  

Figure 5: State Transition Diagram for States (fi? g,). 
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4.2. Solution Method for Pr(Xi(t) = l )  ( i = q + l , - - - , m - 1 )  
If the solution of the system of equilibrium equations (4.5.1) W (4.5.6) is obtained, we can 
get the expectation of 4 by 

Then we can obtain the marginal probability that slot i is full by 

whereE[Fq] can be obtained by 

Pr (X1 (t) = 1) is, of course, obtained by (3.5) after solving Equations (3.3) using the method 
explained in Section 3.3. 

(4.5.1) --' (4.5.6) is a system of linear equilibrium equations with 0(m2) unknown vari- 
ables: More precisely the number is less than (m2+4m+4)/4. Now, let us show an algorithm 
for solving it in 0(m3) time by utilizing its structure. First we will reduce the number of 
variables to m - i + 2 by expressing each of P'Afz, gi) ( fi = 0, - , i, gi = 0 , . . - , m Ã ‘ i  as a 

ofe1(q,k) (k = 0 , - - - , m -  i), i.e., linear combination 

where obviously 

holds and the rest 

(g, = k), 
cq,gi,k = 0 (otherwise ) , (k = 0 , 1 , - S - , m - i )  

of the coefficients are obtained recursively to be explained below. To 
simplify the notation, we use Cf^ instead of Cfi,gi,k, a and t instead of and The 
coefficient Cigk can be obtained from (4.5.1) W (4.5.5) as follows: First suppose that Pl(q, k) 
(k = 0, , m - i) are known for the time being, then q f ( q  - 1, gi) can be expressed in terms 
of P[(q, gi) using (4.5.3) for gi = m -  i, m - i - 1, , 0  and the coefficients will be be 
obtained as in (4.10.1). The same relation holds for r < f + g and f < q. The coefficients 
are obatined in the descending order of f and k until f = 0 yielding (4.10.2) and (4.10.3). 
Note that the coefficients on the right hand sides of (4.10.1) through (4.10.5) are all known 
by the time evaluation of the coefficients on left hand sides to be carried out. Next the 
coefficients Cisgk are obtained for f = i and q < f < i yielding (4.10.4) and (4.10.5) which 
correspond to (4.5.1) and (4.5.2). 
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As (4.10.1) through (4.10.5) are the recursive formulae with the initial terms given by 
(4.9), we can obtain all CfYg,t .  We then construct a system of linear equlibrium equations 
for P[(q, gi) by equating e ( q ,  g,) to the corresponding expression obtained from (4.10.5) 
with fi = 

where 

q for gi = 0,1 ,  - * ,  m - 2 as follows: 

(gi = 0 , - . - , m -  i ) ,  
J:,Wt Cf,g,kP;(q, k )  = 1, 

and the second equation of (4.1 1)  is obtained from (4.5.6). 
(4.1 1) is a system of linear equations with 0 ( m }  unknown variables. If we solve it by a 

standard numerical method and substitute the solution to (4.8), we can get P'( f i ,  g,) ( fi = 
0,  a - ,  i, gi = 0,  - , m - i). Thus we can calculate E[FJ by substituting them to (4.6). 
Finally the marginal probabilities Pr  ( X i  (t) = 1) for i = q + l ,  q + 2, m are given by (4.7). 

Now we consider the time complexity. For each slot i (Ã = q+1, , m-l) the coefficients 
Cf,g,k are obtained in 0(m3) time by (4.10.1)~(4.10.5). A standard numerical method 
requires 0 (m3) time for solving (4.11). Then we can get P[( fi, g,) in 0 (m3) time by (4.8), 
E[&] in O ( d )  time by (4.6), and P r ( X i ( t )  = 1) in constant time by (4.7). Thus we can 
obtain the marginal probability that each slot is full in 0(m3)  time. Since there are m slots 
in all our algorithm enables us to obtain the inventory distribution in 0(m4) time. 

1 0 0  2 0 0  3 0 0 

S l o t ,  N u m b e r  i 
----+ 

Figure 6: Inventory Distribution (m = 300, r = 100, q = 200, /L = 1.0). 
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5. Numerical Experiments 
We have computed the inventory distribution for some examples. In our examples the 
number of slots m is 300, and the reordering point r is 100, so that the reordering quantity 
q is 200. In this case the number of variables of the eqilibrium equations (2.2) is more 
than 2.0 X logo. On the other hand, the equilibrium equations for Pi(f2, gi) have at most 
20200 unknown variables, and (4.11) which we solve indeed has only at most 100 unknown 
variables. We have fixed p at 1.0, and varied A from 0.1 to 0.005. When A = 0.1 for example, 
the mean time between placing an order and receipt of the items is ten times as long as the 
mean time between retrievals, i.e., when the reordered items arrive at  the system, fm is 90 
on the average. 

The results are shown in Fig. 6. As is expected, the following relations hold in the 
numerical results. 

and the probability that each slot is full increases as the arrival rate of items A increases. 
We can also observe the great difference between Pr[xaoo] and Pr[x201] at A = 0.005 in 
particular. It means that the system often becomes almost empty by the time reordered 
items arrive at the system. 

6. Conclusions 
We consider a simple automatic warehousing system in which only one type of items are 
stored and retrieved, and focus our efforts on deriving the inventory distribution. This is 
one of the key factors in designing an automatic warehousing system. We have assumed 
that inventories were controlled by an ( S ,  S) reordering policy, and that received items are 
stored from the closest open slot to the 110 point and a retrieved pallet with items is chosen 
randomly among currently full slots. Under further assumptions on arrival of items and 
request for retrieval of items the system can be modeled as a Markov chain. If we use joint 
inventory levels of items, the number of the states of the Markov chain amounts to 2m, 
where m is the total number of slots. m easily becomes several hundreds to a thousand, so 
that trying to solve the equilibrium equations of the Markov chain directly is not practical 
for real systems. So we devised exact aggregation methods for the states. The number of 
variables in the system of the equilibrium equations of the Markov chain has been reduced 
to 0(m2)  or less by the aggregation for each slot. By solving m such systems we could 
obtain the inventory distribution. We also developed an efficient solution method which 
required 0(m3) time for each system of equilibrium equations by making use of the special 
structure of the system. Thus the time complexity for obtaining the inventory distribution 
has been reduced to O(m4). This enables us to get the exact inventory distribution for real 
systems even though our model has simple assumptions such as only one type of items can 
be treated. 

In order to make our model more realistic we would like to extend or apply our analysis 
to the following cases: 

1. various types of items are treated in the system, 
2. different storage methods such as class-based storage are employed, 
3. waiting times of items before storage and retrieval are taken into account. 
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We believe that the method presented in this paper is a good starting point to the extensions 
mentioned above. 
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