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Abstract This paper investigates a non-linear integer programming problem with an exponential objective 
function and cost constraints, which is a general model and could be applied to the assignment problem or 
the search problem. As a representative example, we consider a following problem of assigning m types of 
missiles to n targets. The value of target i is V, and the single shot kill probability (SSKP) of a j-type missile 
to target i is ,Bij = 1 - exp(-a^) where aij 2 0. Denoting the number of j-type missiles assigned to target 

i by n ~ ,  the expected destroyed value is given by V, {l - exp(- ayni j )} .  If a unit price of j-type 

missile is c, and the total cost of missiles is limited by C, we have cost constraints G cj n'j 5 C. 
To this problem which is NP-hard, we propose two methods, the dynamic programming method and the 
branch and bound method. An approximate algorithm and an estimation of the upper bound of the objective 
function are incorporated in the branch and bound method. Each of these methods has its characteristic 
merits for the computational time. We clarify their characteristics through the sensitivity analysis by some 
examples in this paper. 

1. Introduction 
This paper investigates a non-linear integer progra,mrning problem with an exponential 
objective function a,nd cost constraints, which is frequently encountered in a variety of 
a,pplica<tion areas, and proposes new methods for solving the problem. For example, we 
consider a following problem of a,ssigning m types of missiles to n targets. The value of 
ta,rget i is K a,nd the single shot kill probability (SSKP) of a j-type missile to target i is 
fii, = 1 - exp(-a,,) where a,, 2 0. Denoting the number of j-type missile assigned to 

target i by nrij, the expected destroyed value is given by K {l - exp(- G ~ ' t j n ~ j )  . If I a unit price of j-type missile is c, a,nd the tota,l cost of missiles is limited by C,  we ave 
exist c~nstra~ints ^Fl c, ̂ ,'L, n,, 5 C. R,.H. Nickel et a.1. [5] incorporated a. similarr model in 
his uniformly ajssignment model with multi-types of missiles arnd multi targets. Since they 
dealt with their constraints as the condition not on cost but on the numbers of missiles, 
their optimiza/tion problem was slightly different from our problem and ~ornpara~tively easily 
solved. 

We can find a similar model in the search problems. A searcher wants to rna,ximize the 
proba,bility of detecting a stationary target which hides himself in one of n cells. The location 
of the target is not known with a certa,inty and the prior pr~ba~bility of the target's existing 
in cell i is e~tima~ted by pi. The searcher is given T search time points, t = 1,2 ,  - - , T ,  
when he can look into whichever cell as ma,ny times as he likes. At time point t ,  he can 
detect the target wit>h proba,bility pit (= 1 - e ~ p ( - - a ~ ) )  by looking into cell i if the target 
is there. On the other ha,nd, a look into a cell costs et at time t and the total cost is 
limited by C. When the searcher ha,s the strategy of looking into cell i n2 times at time t ,  
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the detection probability and the cost constraint are given as G pi {l - exp(- @an^)} 
and ^El Q nit <: C, respectively. A problem of distributing discrete search resources 
was studied by J.B. Kadane[6]. He proposed a little different model where the searcher took 
only a look into a cell at every time and the look cost varied depending on the number of 
past looks, and the detection probability was to be maximized. His problem is different 
from our problem and it is able to be reduced to the problem of optimizing the number of 
looks at one time point and to the knapsack problem in consequence. 

The above two models, the missile assignment problem and the search problem have the 
same objective function and the same constraints on variables. A purpose of this paper is 
not to solve the real-life missile assignment problem or the practical search problem but 
to propose some new methods of giving an exact solution to this type of problem with an 
exponential objective function and cost constraints, which has not been studied clearly so 
far. 

Our problem stated above becomes the knapsack problem in the case of n = 1. It 
reminds us tha,t our ~roblem is NP-hard. In this paper, the dynamic programming method 
and the branch and bound method are proposed to solve our problem. In the next section, 
we formulate our problem as an integer programming problem. Two exact methods, the 
dynamic programming method and the branch and bound method are discussed in Sections 
3 and 4, respectively. In Section 5, a numerical exa,mple is examined to investigate the 
alternative strategy about which of special use missiles or general-purpose missiles should 
be adopted. Other numerical examples are used to estimate the performance of two methods 
concerning with the computational time. 

2. Formulation of Problem 
Here, noting that the same model is possible to some problems in other fields as stated in 
the introduction, we take a, missile assignment model as one of representative examples and 
formulaic it as an integer programming problem. 

(1) A defender has n targets with their values {K > 0 , Ã = l, - - , n}. 
(2) An attacker has m types of missiles and a j-type missile has the capability of SSKP 

0 < By < 1 to target z. 

(3) A unit cost of j-type missile is c, > 0 and the total cost of the attacker is limited by 
C > 0. 

(4) The attacker wants to find an optimal assignment of his missiles of maximizing the 
expected destroyed value of targets . 

For convenience, we replace /3a with 1 - exp(-aij) where a y  ;> 0. Denoting the number 
of j-type missiles assigned to target z by variable nq, we obtain the kill probability of 
target z, 1 - (l - ,Bi,)"" = 1 - exp(- aynu) and the total cost, G, c, nij. 
Therefore, our problem is formulated as the following integer programming problem (PO). 
Z^ is a set of non-negative integers. 

n ( m 1 

+ n~ E Z , z = 1 , - - - , n ,  j = 1 , - - - , m  (3) 
The objective function has a specific structure with the weighted summation of the 

exponential functions over one suffix which includes the summation of nu over another 
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suffix. One of the earlier studies about the assignment problems of missiles is Manne's[4] 
where the objective function has one suffix and the total number of missiles is restricted. 
Another one is Lemus7s[3]. He studied the objective function given by Eq.(l) with the 
constraint upon the number of missiles and proposed an approximate algorithm. Nickel[5] 
extended it and analyzed the effective use of the general-purpose weapon. Concerning with 
multiple resource allocation problems with the objective function of Eq.(l), some studies 
have been published so far but constraints are given only upon the number of resources[?]. 
As you c m  imagine, cost coefficients {c,} make this problem (PO) difficult to solve. 

In the case of n = 1, the problem (PO) becomes a knapsack problem of maximizing 
Gl alinl,. It proves that our problem is NP-hard. Assuming that parameters {ci, j = 

1, . , m} are rational numbers, we multiply both sides of inequality (2) by the least common 
multiple of their denomina,tors and then make coefficients {c,} be integers. Hereafter we 
treat {c,} as positive integers. 

3. Solution by Dynamic Programming Method 
We define a subproblem of (PO) with the number of targets k <: n and cost limit D as 
follows. 

k m 

E E cjnifi D, n~ 6 Z+ . (4 )  
1x1 j=1 

We define the optimal value of a kna,psack problem by 
l 

+ Fk-l(D - Qk)] 

Many studies about the integer knapsack problem have been cumulated so far. Gilmore[l] 
proposed the dynamic programming algorithm by using the periodicity of the knapsack 
function. By his study, vk (Q), Q = 0,1, - - , C are given as by-products in the process of 
computing vk (C) [2]. We use recursively Eq. (6) varying k ==Â¥ 1, - - , n, D = l, - - - , C to 
obtain K(C) in consequence. Denoting the complexity of computing vk(C) by knap(C), 
the computation of &(C) takes the complexity of order 0 ( n  - (knap(C) + C2)). We call the 
dynamic programming method the DP method for short. 

4. Solution by Branch and Bound Method 
As known from recursion (6), cost Qn permitted to missiles which are designated to target 
n ought to be determined at the first step for evalua,ting &(C). If Qn is determined, 
then the decision making of Qn-1 within residual cost C - Qn is the second step. These 
decision making points look like nodes on an enumeration tree used in the branch and 
bound method. We propose the branch and bound method by this idea. I t  is essential to 
find an effective bound estimakion and an appro~ima~te solution as exactly as possible for 
the efficient execution of this method. The a,pproximate algorithm is discussed afterward. 

Our branch and bound method proceeds as follows. A root node branches to C+ 1 nodes, 
I(1) = {O, 1, - - , C}, each of which indicates the cost constraint Ql to be designated to target 
1. From node Ql, nodes 1(2) = { O ,  - . - , C - Ql} are branched. Each of them indicates the 
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cost constraint Q2 for target 2. In the result, a n-ply layered tree is generated as an 
enumeration tree. On the sth layer, Ql, Q2, - - , Q, are already given but Q,+l,. , Qn 
are not determined yet. By given Ql, Q2, - , Q,, the maximum of the expected destroyed 
value of targets 1, 2, - - - , S is calculated, which is saved in ~ ( s )  in the algorithm. In Q(s), 

Qi is saved. Because the distribution of the residual cost C - Q(s) to targets S + 1, - - , n 
is not determined yet, the problem of giving the maximum of the expected destroyed valhe 
of targets S + 1, - - - , n, 

By an approximate algorithm, find a tentative value of the objective function 
and store it in f c .  Set Q(0) = 0, ~ ( 0 )  = 0, s = 1 and I (l) = {O, 1, - , C} and 
go to (Step2). 
Select a value from I(s),  store it in Q, and set Q(s) = Q{s - 1) + Q,. Solve the 
following knapsack problem 

Gs(C - Q(s)) := max Vicf y > k j n y  {Â£ (Ll ) 

and calculate v(s) by i;(s - 1) + V. - f (vS(Qs)). 
If s equals to n,  go to (Step7). 
Solve a relaxed problem of G, (C - Q(s)) to find G, (C - Q(s)) and estimate an 
upper bound by setting G = ~ ( s )  + GS(c - Q(s)). 
If G S f c ,  go to (Step4). 
If G > f c  and the relaxation problem has an integer optimal solution, set f c  = G 
and go to (Step4). In the case of G > f c  and non-integer solution, go to (Step6). 
Set I(s) = I(s) - {Q,}. 
If /(S) becomes an empty set, set S = S - 1 and go to (Step5). Otherwise, go to 
(Step2). 
If S equals 0, terminate. Current f c  gives the optimal value. 
Otherwise, go to (Step4). 

n m 

E x ~ j n t j S C - Q ( ~ ) ~ n k j ~ z "  
k=s+l j=1 , 

Increase S by one or set S = S + 1. 
If s equals n, set I (S) = {C - Q(s - l)}. Otherwise, set I (S) = {0, 1, - - , C - 
Q(s - l)}. Go to (Step2). 
If f c  < v{n), set f c  = ~ ( n ) .  Go to (Step4). 

is difficult to be solved, where we use notation f (X) := 1 - exp(-X) for convenience. Instead 
of rigidly solving the problem, we can estimate an upper bound & ( C - ~ ( s ) )  of G,(CÃ‘Q(s) 
by solving a problem of relaxing integer variables {nkj} to real numbers and furthermore 
estimate an upper bound of the optimal value of the original problem (PO) by - 

G = B(S) + G,(c - Q(s)) . (7)  

Now we discuss the approximate algorithm and the estimation of an upper bound of 
the objective function. Hereafter the branch and bound method is occasionally called the 
BAB method for short. 
4.1 Approximate algorithm 
For emphasizing the missile assignment {ran, z = 1, - - - , n, j = 1, - . , m}, we provide another 
form of the objective function (1). 
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Consider another assignment { n g .  Only the specific va,ria,ble nh  is different from nkz, that 
is %l+ l ,  and all other elements are the same afs {nn}. Then the ratio of the value increment 
of the objective function to cost increment is given by the following eq~a~tion. 

Hn({n'.,}) - &({ÃˆG} &(l - exp(-akl)) 
m 

Ykl - - - - exp 
Ci Cl J=l 

This ratio gives us a measure of efficiency about the increment of the number of missiles. 
Now we propose an approximake algorithm, say a greedy algorithm, as follows. Starting from 
{ni~} =- {O}, TIJU which sahisfies ~onstra~int (2) and maximizes ym is increased by one. This 
process is repeated until constraint (2) is violated. As known from Eq.(9), the increment 
of m makes each of ratios {ykj, J = 1, . - - , m} multiplied by exp(-W). Furthermore, the 
ordering among ykj is never changed for j = 1, ., m. n this process, if the increment of 
nkl is not permitted by cost constraint, which means more cl is beyond the cost permission, 
{U i = l, - - - , n,} are no longer candidates for being increased. We itemize our greedy 
algorit hm as follows. 

For i=l, - - , n, j = l, - , m, calculate the measure of efficiency by 

Initialize parameters as follows. 

in,,} = {O} , B =C, F= { 1 9 2 , - - - , m }  . 

Set F = F - { j e F l  B - c j < 0 } .  
If F is 0, then terminate. Current {nij} gives an approximate solution 
Select (k, 1) by 

yki = max 
jâ F,z 

and revise parameters as follows. 

4.2 Upper bound estimation 
Here we solve the relaxation of Gs(C - Q ( s ) )  in (Step3) of the BAB procedure. To avoid 
the complicated present ation, we discuss the relaxat ion of (4), which is essentially the same 
problem as Gs (C - Q ( s ) ) .  

m 

l - exp(- aijnij) < D, ni, > I)] . (10) 
j=l 

An optimal solution is given by the following theorem. 
aij* (i) Qi j  Theorem 1. For i = l, - - - , k, set oi = = max - . Then an optima,l solution 
cj* ( i )  3 C j  

{nij, Z = 1, - - , k, j = 1, - - , m} of the relaxa,tion (10) is presented b y  the following formulae. 

nq = 0, ]̂  m) . 

A is a Lagrangean multiplier uniquely determined b y  the next equation. 

[x}+ denotes max{0, X}. 
Proof: By using some notations 
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It is easy to solve this maximization by using the Kuhn-Tucker condition. A Lagrangean 
function L({^}) is defined by the following. 

k / k \  k 

The following conditions are necessary and sufficient for an optimal solution. 
9L 
- = ViOie-<T q̂i - A + ui = 0, i= l , . .  . , k  , 
9Qi (16) 

viqi = O ,  Ã ˆ  l , . . . , k  , 
k 

(18) 

- y q 2 = D .  
2=1 

(19) 

Using these conditions, qi > 0 results in vi = 0 and b e u i q i  = A. The case, of qi = 0 results 
in v 2 _ > 0 and Voie-^ = A - vi 5 A. Therefore, an optimal solution of {qi} is present,ed 
by the following equation. 

1 + 
q2 - log?] 

0-2 
(20) 

In the result, an optimal solution of {n }̂ is given by Eqs. (l l) and (12). Multiplier A is 
determined uniquely by Eq.(19) or 

Q.E.D. 
We explain about a concrete procedure of computing inij} and F k ( ~ ) .  Without loss of 

generality, assume that vial > > - > K0-k. After finding 1 = Via\ = maxi VG, A = 
mmi e-ciD 

z 2 , Eq. (21) holds for a finite A satisfying A > A > A because g(A) = 0, g(A) 2 D 
and g(A) is non-increasing for variable A. Therefore, we can determine I* uniquely, I* 
satisfying g(&*m*) < D g(l$*+lal*+l) or I* = k satisfying g(K0-k} < D. Then Eq.(21) 
becomes the following. 

By using this relation, A and Fk (D) can be calculated. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



R. Hohzaki & K. Iida 

5. Numerical Examples 
Here, we investigate the characteris tics of optimal solutions and the computational efficiency 
of the proposed met hods. We take missile assignment problems as comprehensive examples. 
By the first example, we investigate the alternative strategy among missiles for special use 
and for general purpose. By the second a,nd the third examples, the sensitivity of the 
proposed two methods are analyzed for the change of the cost limit C and the number of 
targets or missiles in terms of computat ional time. 
5.1 Alternative strategy among some types of missiles 
Here we examine some characteristics of optimal solutions. Generally speaking, if the con- 
straints of the integer problem are loose, optimal integral solutions become little different 
from optimal continuous solutions of the problem relaxed by changing integral variables to 
continuous ones. Then, in some examples, we impose tight constraints on available total cost 
so that small C is set comparing with the unit cost c, and elucidate interesting properties 
of optimal integral solutions. 

Consider 4 targets with their values V\ <: <: V3 <: V4 and 5 types of missiles, that 
is, n = 4 and m = 5. The fifth type of missiles is manufactured for general purpose. It 
is comparatively effective to each of 4 targets a,nd cheap. Each of other types of missiles 
is most effective to a specific target and a little expensive. The 2-type missile for special 
purpose has the highest SSKP to target 2 but lower SSKP to other targets. We analyze the 
optimal assignment of missiles by va,rying parameters. 

(Casel) This is a basic case. 
0 Target value: Vi = 2, V2 = 4, V3 = 6, V4 = 8 
0 Unit prices: cl = 2, c2 = 3, c3 = 4, c4 = 5, c5 = 1 
o SSKPs: f t i=0 .7 ,  f t ,=0 .1  (Gj), i , j =  1 , - - - , 4 ,  ft5 =0.2, i =  1 , - - . , 4  

Changing the total cost limit to C = 10,12,14,16,18,20, optimal assignments 
{riij} are presented by Table 1. As seen from this table, the optimal solution 
consists of assigning special-purpose missiles at first and then covering residual 
cost permission by cheap missile for general purpose. 

(Case2) In this case, only SSKPs of general-purpose missile of Case 1 increase a little 
and other parameters are the same as Case 1. An optimal solution is given in 
Table 2. 

0 SSKPS: ,&j = 0.3, i = 1, - - - , 4  
The optimal assignment changes as follows. The assignment of the 1st and 2nd 
types of missiles is preferable, which is the same as Case 1, but the adoption of 
more expensive 3rd a,nd 4th types of missiles is likely to be restrained. Instead of 
the 3rd a,nd 4th types of missiles, many general-purpose missiles are concentri- 
cally assigned to targets 3 and 4 in order to assure the high expected destroyed 
value. 

(Case3) This is the case in which unit prices of missiles of Case 2 increase by one and 
other parameters are the same as Case 2. Optimal solutions are shown in Table 
3. 

Unit prices: cl = 3, c2 = 4, c3 = 5, c4 = 6, CQ = 2 
In this example, the general-purpose missile plays both of a complementary and 
main role. In the case of C = 10, the cost constraint could permit us to buy one 
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Table 1. Optimal Allocation of Case 1 

Table 2. Optimal Allocation of Case 2 

r 
C  = 10 : Fn(C) = 10.9 C = 12 : Fn(C) = 12.6 

Target No. 

1 
2 
3  
4 

C =  14 : FJC) = 14.0 

Target No. 

1 
2  
3 
4  

Missile Types 

1 2 3 4 5  
0 0 0 0 0  
0 1 0 0 0  
0 0 1 0 0  
0 0 0 0 3  

Target No. 

1 
2  
3  
4  

C = 16 : Fm(C) = 14.9 

Missile Types 

1 2 3 4 5  
0 0 0 0 0  
0 1 0 0 0  
0 0 1 0 0  
0 0 0 1 0  

Missile Types 

1 2 3 4 5  
1 0 0 0 0  
0 1 0 0 0  
0 0 1 0 0  
0 0 0 1 0  

Target No. 

1 
2  
3 
4  

C = 14 : FJC) = 15.4 

C  = 18 : Fn(C) = 16.9 

Missile Types 

1 2 3 4 5  
1 0 0 0 0  
0 1 0 0 0  
0 0 1 0 0  
0 0 0 1 2  

Target No. 

1 
2  
3  
4  

C  = 16 : Fn(C) = 16.3 

Target No. 

1 
2 
3 
4  

C = 2 0  : Fn(C) = 17.4 

C  = 18 : Fn(C) = 15.5 

Missile Types 

1 2 3 4 5  
1 0 0 0 0  
0 1 0 0 0  
0 0 0 0 4  
0 0 0 0 5  

Target No. 

1 
2  
3  
4  

Missile Types 

1 2 3 4 5  
1 0 0 0 0  
0 1 0 0 1  
0 0 0 0 6  
0 0 0 0 6  

Target No. 

1 
2  
3  
4  

Target No. 

1 
2  
3  
4  

C =  20 : Fn(C) = 16.1 

Missile Types 

1 2 3 4 5  
1 0 0 0 0  
0 1 0 0 0  
0 0 0 0 5  
0 0 0 0 6  

Missile Types 

1 2 3 4 5  
1 0 0 0 0  
0 1 0 0 2  
0 0 0 0 6  
0 0 0 0 7  

Missile Types 

1 2 3 4 5  
1 0 0 0 0  
0 1 0 0 0  
0 0 1 0 1  
0 0 0 1 3  

Target No. 

1 
2  
3 
4  

Missile Types 

1 2 3 4 5  
1 0 0 0 0  
0 1 0 0 0  
0 0 2 0 0  
0 0 0 1 2  
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Table 3. 0ptima)l Alloca,tion of Case 3 

C = 20 : Fn(C) = 14.7 
1 Missile Types 

Ta,rgi  No. ml 1 2 3 4 5  

1 0 0 0 0  
0 1 0 0 0  
0 0 1 0 0  

4 0 0 0 1 1  

more 4th type of missile or two more 1st type of missiles instea,d of 3 general- 
purpose missiles. In this case, the genera,l-purpose missile is of main use. I11 
cases of other cost limits, it is of complementary use. The usage of the general- 
purpose weapon depends not only on its cost-performance but also on other 
missiles' cost-performance. In addition, the solution is perturbed a little by the 
attribute of its being integer. 

5.2 Computational analysis for two methods 
Two methods, the DP method a,nd the BAB method, are proposed in the previous sec- 
tion. Here, we are interested in comparison between the computational time of them. A 
mainframe computer HITACHI S3600/120A and FORTRAN 77 a,re used as the computer 
ha,rdwa,re arnd language. 

(1) Change of cost permission 
With varying the cost limit C from 40 to 200 in Case 1, CPU-time(seconds) for both 
methods are measured and presented by Table 4. In data for the BAB method, CPU- 
time of using the Greedy algorithm and solving the relaxed problems are all included. 
For the sake of comparison, the result by the total enumeration method (TE method) 
on the enumerakion tree and the result by the greedy algorithm are written ako. Not 
only CPU-time but also the relaiive error of the value of the greedy solution to an 
optimal one a,nd the number of bra,nches on the enumera,tion tree are both obtained 
for the BAB method. From the discussion of Section 3, it is comprehensible that 
computational time increases as C increases for the DP method. However, for the 
bra,nch and bound method, it depends 011 the precision of the greedy solution a,nd the 
efficiency of the bounding process and so it varies case by case. From this example, 
the increa,se of CPU-time appea,rs in the case of C = 40 120. On the contrary, 
CPU-time decreases in the case of C = 140 180. This is caused mainly by the fact, 
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Table 4. CPU-Time(sec.) of Case 1 with varying C 

Method 

DP 

BAB 

Greedy 

tha,t the relative error of the greedy solution becomes extremely small, which makes 
the bounding process more efficient a,nd the number of branches more less. I11 Table 
4, Fn(C) in the case of C > 100 is nearly equal to the optimal value without cost 
constra,int, which is Vl + + V3 + V4 = 20. Therefore, the optimal condition in the 
case of large C is not so tight that there are ma,ny good solutions around the optimal 
one a,nd perhaps the greedy solution is one of them. This computational characteristic 
afbout the BAB method generally appears in other cases. 
Change of the number of targets or the number of missile types 
Here, we analyze the sensitivity of n and m to the computa,tional time for two methods. 
We vary n from 2 through 16, m from 2 through 16 with fixing C = 50. Other 
parameters are determined as follows. For a combina,tion of n and m, we randomly 
select the unit prices of ea,ch type of missile values of targets Ks afnd SSKPs /̂ ,S, 

during [l, 101, [l, 101 a,nd [0.0 1,0. 91, respectively. By this way, we make 10 problems 
and measure CPU-times for solving these problems by each of two methods. CPU- 
times in Table 5 are presented by the mean value. The upper figures are data for the 

Items 

CPU-Time 

CPU-Time 

TE 

Table 5. CPU-Time(sec.) with varying n and m 

Cost permission : C 

40 60 80 100 120 140 160 180 200 
5 . 0 ~  1 . 0 ~  1 . 7 ~  2 . 5 ~  3 . 6 ~  4 . 8 ~  6 . 1 ~  7 . 6 ~  9 . 2 ~  
10-~ 10-2 I O - ~  1oÃ 10-~ loÃ 10-2 10-2 I O - ~  
1 . 5 ~  2 . 2 ~  4 . 6 ~  6 . 1 ~  9 . 3 ~  7 . 9 ~  2 . 7 ~  7 . 5 ~  8 . 3 ~  
I O - ~  10-a 10-~ 10-~ 10-~ 10-' 10-~  l"-' 

# of branches 
CPU-Time 

Relativeerrors 

tt of 1 of targets 

851 1183 2661 3497 5386 4167 983 101 101 
3 . 8 ~  5 . 1 ~  6 . 8 ~  8 . 2 ~  9 . 7 ~  1 . 1 ~  1 . 3 ~  1 . 4 ~  1 . 6 ~  
l o p  lop4 I O - ~  10-< 10-~ lop3 lom3 
1 . 5 ~  4 . 4 ~  1 . 1 ~  3 . 1 ~  7 . 2 ~  1 . 7 ~  3 . 1 ~  9 . 4 ~  2 . 9 ~  
1oy2 10-3 10-a I O - ~  10-Â 10-Â I O - ~  io-Â low8 

CPU-Time 

ofbranches 

4 . 5 ~  1 . 4 ~  3 . 2 ~  6 . 1 ~  1 . 0 ~  1 . 6 ~  2 . 4 ~  3 . 5 ~  4 . 7 ~  
10-~ 10-I 10-I 10-l loo 10Â 10Â 10Â 10Â 
2 . 6 ~  8 . 1 ~  1 . 9 ~  3 . 6 ~  6 . 1 ~  9 . 6 ~  1 . 4 ~  2 . 0 ~  2 . 8 ~  
104 104 105 105 105 105 106 106 106 

missiles 
2 

4 

2 4 6 8 10 12 14 16 
2.2~10-'  5 . 8 ~ 1 0 - ~  9 .5~10-^  1 . 3 ~ 1 0 - ^  1 . 7 ~ 1 0 ~ '  2 . 1 ~  10-^ 2 . 4 ~  10-^ 2 . 8 ~  10-^ 
1 . 1 x 1 0 3  1 . 3 ~ 1 0 - ^  3 . 9 ~  loÃ‘ 1 . 7 ~  10-l 1 . 6 ~ 1 0 - I  8 . 7 ~  10-I 7 . 1 ~  10" 7 . 2 ~  10" 
2 .4~10-^  6 . 3 x l 0 - ~  1 . 0 ~  10-^ l .4xl0-^ 1 . 8 ~ 1 0 - X  2 . 2 ~  10-^ 2 . 6 ~  10-^ 3 . 0 ~  10-'Â¥^ 
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DP method and the lower figures for the BAB method. Darts for the T E  method are 
omitted since it is clearly inferior to other two methods in atny case. 
Figure 1-1 shows how the number of the targets changes the CPU-time by the DP 
method in the cases of the number of missile types m = 2, 8 and 14. As you see, 
the CPU-time for the DP method shows a linear increase for t,he number of taxgets 
n, which can be estimated from the discussion about the computationa,l complexity in 

ection 3. Figure 1-2 shows the cha,nge for the BAB method but it uses the logarithm 
as a unit of the axis of ordinate. Thart is, the change of CPU-times is very steep afs 
the number of the targets increases. This is by the reason that the enumeration tree 

AB method has the depth of n and the number of the branching or its leaves 
is enlarged by the n-th power. However, only concerning with the greedy solution, its 
relative error is less than 2.0 x 1 0 2  over the whole cases and the greedy solution can 
be obtained easily. In the case of n = 10 and m = 10, the greedy algorithm requires 
1.4 X 1 0 3  seconds of CPU-time and yields only 3.4 x 1 0 3  of t'he relative error on the 
average. 

0 5 10 15 20 

Number of the targets (n) 

Fig.1-1 CPU-time for the DP method 

Number of the targets (n) 

Fig.l-2 CPU-time for the BAB method 

The number of items in a knapsack problem to be solved on the way is nothing but 
m in our problem and the total number of instances of t,he kixpsack problem are at. 
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most as much as the number of targets for each method. Therefore the increase of 
the CPU-time by the increase of m is mainly caused by the fact that the size of the 
knapsack problem becomes larger. The CPU-time increases as m is larger but its rate 
is a little. This is the fact for the DP method, which is seen in Table 5 .  For the BAB 
method, this is true for small n but not true for large n. In the case of large n, the 
change of system parameters m, n, C, C%,  ay produces much effects on the number 
of searched nodes on its large enumeration tree. By this reason, the CPU-time does 
not necessarily increase by m, remaining its increasing or decreasing rates small. In 
fact, the variance of CPU-times becomes larger as n increases, which means that the 
CPU-time varies irregularly for each problem. For example, the va,riances for the DP 
and the BAB methods are 1.0 X 10"~ and 0.8 X loV7, respectively, for m = 10, n --= 2 
and it becomes 2.0 X 1 0 7  and 8.1 X 1 0 2  respectively, for m = 10, n = 10 

In the previous two examples concerning with the computational analysis, it seems that 
we take comparatively small size of problems. However, as the practical missile assignment 
problem or the practical search problem, they have enough large size. And it is thought 
that results obtained by the previous examples give a guideline for applying the proposed 
methods to other unknown size of problems. Now, we are on the position to itemize the 
characteristics of the methods. 
(1) For the dynamic programming method, 

(ii) 

(iii) 

(2) For t 

(9 
(ii) 

(iii) 

Cost constraint C indicates a capacity of the knapsack problem as a subprob- 
lem. The computational time increases linearly or a little more strongly by the 
increase of C. 
The number of the types of missiles indicates the number of items included in 
the knapsack problem. The increasing ra,te of the computational time by m is 
small. 
The number of the targets indicates the number of repeaks in the recursive 
equation (6). The increasing rake of the computational time by n is a little more 
than linear. 
In the middle- and large-size problems for m and n, the DP method is superior 
to the BAB method if the exact solutions are required. 
ie branch and bound method, 
The increa,sing rate of the computational time by C is as small ass the DP method. 
The effect of m 011 the computational time is small comparing with other sys tem 
parameters' effects. 
In many cases, the number of targets has the effect of the exponential increase 
on the computational time because it determines the depth of the enumeration 
tree. 

(iv) In the following case, the bounding procedure of the BAB method has a good ef- 
fect on the computational time beca,use the relative errors of the greedy solutions 
to the exact solutions are small. 

In the case that the cost constraint C is large comparing with the unit 
costs {ci} and the number of the missiles can be regarded as real values. 
In the case tha,t the SSKPs or {ai j}  are large and the small difference of 
n i j }  has not so laxge effect on the values of the objective function. 

6. Conclusions 
This paper deals with an integer programming problem with cost constraint and an objective 
function of the exponential form and proposes two methods, the dynamic progra,mming 
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method and the branch and bound method, to exactly solve the problem. The proposed 
dynamic programming method is availa,ble to the general objective function that has the 
form of f i  (E> iony) .  For the bra,nch and bound method, if the function fi(-) is 
concave and non-decreasing, the relaxed solution might be derived easily as it is done in 
Theorem 1. 

Our problem is NP-hard, which has been proved, and to shorten its computational time 
is one of the interesting points. By numerical examples, we can say the followings concerning 
with the computational time. The dynamic programming method has the linear increasing 
feature for the number of targets n and the number of types of missiles m, and the squared 
increasing feature of the cost permission C. For the branch and bound method, there is some 
possibility that the computational time decreases in spite of the increasing cost permission. 
However it has the steep increasing feature for n ,  which ought to be improved further. I11 
result, the dynamic programming method is superior to the branch and bound method in 
many cases. However, the greedy algorithm used in the branch and bound method gives 
good approximate solutions with small CPU- times, especially in large-size problems. 
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