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Abstract We analyze alternating traffic crossing a narrow one-lane bridge on a two-lane road. Once a
car begins to cross the bridge in one direction, arriving cars from the other direction must wait, forming a
queue, until all the arrivals in the first direction finish crossing the bridge. Such a situation can often be
observed when road-maintenance work is carried out. Cars are assumed to arrive at the queues according
to independent Poisson processes and to cross the bridge in a constant time. In addition, once cars join
the queue, each car needs a starting delay, a constant, to start crossing the bridge. We model the situation
where a signal controls the traffic so that the signal gives a priority to one direction at least for a fixed time.
Under an assumption, the first two moments of a period during which the signal keeps giving a priority to
one direction are obtained. Using a stochastic decomposition property the mean waiting times are obtained
of cars to start crossing the bridge from each direction.

1. Introduction

In this paper, we analyze alternating traffic crossing a narrow one-lane bridge on a two-
lane road. Once a car begins to cross the bridge in one direction, arriving cars from the
other direction must wait, forming a queue, until all the arrivals in the first direction finish
crossing the bridge. Such a situation can often be observed when road-maintenance work
is carried out. Cars are assumed to arrive at the queues according to independent Poisson
processes and to cross the bridge in a constant time. In addtion, once cars join the queue,
each car needs a starting delay, a constant, to start crossing the bridge.

If the bridge is short enough to see the other side, a signal control is not necessary. The
car at the head of the queue will start when it finds that there is no car of the other direction
on the bridge. When there are no cars either on the bridge or in the queues, an arriving car
in either direction will enter the bridge without a stop. Chatani [4] analyzed this case and
obtained the mean queue lengths when all the arrivals in the other direction finish crossing
the bridge, assuming the arrival rates from each side are equal.

On the other hand, if the bridge is too long (or winding) to be looked over, signals are
necessary on both sides to control the traffic. We consider this case. Suppose that two
sensors are set on both sides of the bridge. Consider a period during which right-hand-side
traffic has a priority. If no car from the right-hand direction passes in front of the sensor
during the time which a car in that direction takes to cross the bridge (there is no car in the
bridge at this instant), the signal changes, giving the priority to the left-hand-side traffic.
Once the signal changes, it does not change again until the left-hand side traffic disappears.
Even if there is no car waiting in the left-hand side queue when the signals change, the left-
hand side retains priority at least during a fixed time, called ‘a forced priority time’. If any
cars arrive from the left-hand side during the forced priority time, the signal is controlled by
the same rule mentioned above. Otherwise the signal again changes to the right-hand side
traffic when the forced priority time passes. For this model, we obtain the mean waiting
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times of the arriving cars to start crossing the bridge.

In the 1960s, the vehicle-actuated traffic signal control models were analyzed by Darroch,
Newell and Morris [5], and Newell and Osuna [8]. Independently, the alternating priority
queues were also analyzed by Avi-Itzhak, Maxwell and Miller [2], and Stidham [9]. These
works became the basis of polling systems, in which a single server attends multiple queues,
and many variations of the polling models have been analyzed recently . Alfa and Neuts [1]
modeled platooned arrivals in road traffic using a discrete-time Markovian Arrival Process
(MAP), and confirmed the intution that ignoring correlation in the arrival process results
in an underestimation of the mean queue length.

The original model of our study, which incorporates neither signal control nor starting
delays, was proposed and analyzed by Greenberg, Leachman and Wolff [6]. They made the
approximation that cars in queue cross the bridge together in a constant time, which easily
leads to the first and second moments of the lengths at embedded points and the mean
delay. In this paper, we introduce starting delays and make the model more realistic.

The remainder of the paper is organized as follows. In the next section, we present the
queueing model. In order to get the mean waiting times, the first and second moments of
a period during which the signal keeps priority for one direction are required. In Section
3, we represent these two moments, conditioned on the numbers of waiting cars at the
beginning of these periods. These conditions are removed under an assumption in Section
4. In Section 5, the mean waiting times of the cars to start crossing the bridge are expressed
as the function of these two moments, using a stochastic decomposition property for the
amount of work. Finally, we make concluding remarks in Section 6.

2. Model Description

The queueing model under consideration is a modified version of the simple traffic model
by Greenberg, Leachman and Wolff [6], which incorporates neither the signal control nor
starting delays.

Figure 1. Alternating Traffic Model

Suppose we have a narrow one-lane bridge on a two-lane road as shown in Figure 1.
Once a car begins to cross the bridge in one direction, arriving cars from the other direction
must wait, forming a queue, until all the arrivals in that direction finish crossing the bridge.
Queues of right-hand-side traffic and left-hand-side traffic will be referred to as Q1 and Q,
respectively. Cars arriving at @Q;,7 = 1,2, will be referred to as type-i cars. Cars arrive at
the queues according to independent Poisson processes. Denote by \; the arrival rate at @,
1 =1,2. Let B;, i = 1, 2, be the durations of a period during which type-i cars have priority,
simply called a ‘type-i period’. Once type-i period ends, type-j(j # %) cars in queue initiate
type-j period. Each car in queue needs the starting delay 7 seconds, that is, if there are k
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cars waiting in (); when B;(j # i) ends (B; starts at the same time), it takes k7 seconds
for the kth car to start crossing the bridge. In this case, if the (k + 1)st car arrives in k7
seconds from the starting point of B;, then the (k + 1)st car also needs the starting delay.
Similarly, if the (k + 2)nd car arrives in (k + 1)7 seconds from the starting point of B;,
then it also needs the starting delay, and so on. Once cars start crossing the bridge, they
complete crossing the bridge 7" seconds later, a constant, independing of the number of cars
in the bridge. An arriving type-i car that finds Q; empty but there are still some type-i
cars in the bridge, can start crossing the bridge without stopping, and takes T seconds to
cross the bridge. B; will be extended as long as the next type-i car arrives while type-i cars
are crossing the bridge. Even if there is no car in (); when B; ends, the signal controls the
traffic so that type-i cars have a priority at least V; seconds (the forced priority time), that
is, even if no type-i car arrives during V;, type-j cars can not cross the bridge during this
period. If the type-i cars arrive during V;, then B; will be extended in the same manner;
otherwise B; ends V; seconds later.

In the following three sections, we analyze the queueing model and obtain the mean
waiting time of the cars to start crossing the bridge for the special case V; =T, (i = 1, 2).

3. Conditional Duration of Type-: Period

In this section, we formulate the Laplace transform and the first two moments of B;y;,
the durations of a period during which the bridge is continuously occupied by type-i cars,
conditioned that there are k; cars waiting in ¢); when B; starts. The conditions are removed
in the next section.

3.1. The Case k; >0

First, we consider the case k; > 0. As mentioned in the previous section, we have to take
the starting delays into account when @Q); is not empty. Hence we divide the period B;j, into
two parts, i.e., the duration of the period where type-i cars are waiting in Q; (referred to
as Biv,‘,’;i), and the duration where Q; is empty but there are still some type-i cars crossing
the bridge (referred to as BY), that is,

B, = B}y + Bf .

Note that the distribution of BE is independent of k;. Suppose k; = k > 0. Let N/} be the

number of arriving cars during B}, and #; and t, (s = 2,3,---, N]%) be the arrival time
of the 1st car from the beginning of B} and the inter-arrival time between the (s — 1)st
and sth cars, respectively. Since type-i cars arrive at the queues according to independent
Poisson processes with rate \;,

(k+1)1— t1 (k+n—2)T—t1—-—~tn—2 plk+n—1)7—t1——tp-1
g =my = [T [0 J
t1 to= tn—1=0 1,=0

Aie—/\ it Aie—A,tz L. AieﬂAitne—Ai((k+n)T—t1—-"-—tn)dtl . dtn
(k+n—1)1—t1—-—tp—1

kT
= N\le~Mlktn)r dty - f dtn
t,

t1=0 n=0
_ ek /-k'r L /‘(k+n—1)r it
t t1=0 tn=t1+ta+-ttn_1
. n
[Az(k + n)T] k e-—/\,-(k+n)1', (31)
n! (k+n)
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Where the last equality can be proved using the mathematical induction. N}, ik = T means
Bl = (k + n)7; that is,

Ptk +m)7]” ke

wo_ —
P{B/, = (k+n)r} = — o n)e
Then the Laplace transform of B, ' i given by
. s Xilk + )T INET k)
Fag(s) = Ble?tk] = 3 PEX TR ey (52
’ n=0 :

and the first and second moments of BZZ are obtained by

d * — [)‘l(k+n) ]n k =i (k+n)T

E(BY) = —-—fo (0 =X ke 63)
 [M(k nog .

E(BZZ2 — d82 fB ( ) _ — g[ ( :ln)'r] (k +n) (k+n)27'2€ As(k+n) i (34)

Since (3.1) is still a probability distribution even when 7 is replaced by 72z, we have

> [Ai(k + n)T2] k e~ Nilktn)rz _ (3.5)
n=0 n! (k + n)

From the first and second derivatives of (3.5) at z = 1, and (3.3) and (3.4), the first and
second moments of B, i are given by
kT
EBY) = : 3.6
k212 kT3
EBLY = : . 3.7
( k) (1= N7)2 + (1—N\7)3 (3.7)
Equations (3.6) and (3.7) correspond to the first two moments of the delay cycle in M/D/1
queue (see sec. 1.2 in Takagi [10]), if we set the service times of the first customer and the
other customers to k7 and 7, respectively.

Now we consider the Laplace transform of B. Let NF be the number of arriving cars
during BP, and t; and ¢, (s = 2,3,---, NF) be the arrival time of the 1st car from the
beginning of B and the inter-arrival time between the (s — 1)st and sth cars, respectively.
Given N = n, BS £ T+t +1t, + -+ + t,, where t,,s = 1,2,--+,n, are i.i.d. with a
truncated exponential distribution. Hence the Laplace transform of BE is given by

fiple) = Bl

— / / / AP Gat )T Htattatottn) gy gp L gt
t1=0 Ji,=0 =0

n=0
Ai+s
= O (3.8)
and the first two moments of B is obtained by
d edT — 1

Bf) = —— = :

BES) = —hiel)| == 9)
d? 2eMT (eMT — \T — 1)
E(Bf?) = —_f* = d .
( [ ) ds2 fo(S) =0 Ag ’ (3 10)
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which coincide with the results in Greenberg, Leachman and Wolff [6]. Since B} and BY
are independent each other, we have the Laplace transform of B; ; and the first two moments
of duration of B;;, using (3.2) and (3.6) ~ (3.10):

T5(5) = fim(5)f30(5)

_ o dits ST TINAT e
= T ngo = e s)k+m)r (3.11)
kT eNT —1
E i = '
(Bir) = {57+ 5 (3.12)
9 2 AT
) T _ T 27‘(6 Y 1)
E(Bz‘,k) (1 _ /\i,’_)zk(k 1) + (1 — )\i,r)3k + (1 - /\iT))‘i k
zeAiT e/\.,',T — AZT _ 1
L2 2 ), (3.13)

(3

3.2. The Case k; =0
Next we consider the case k; = 0, where there is no type-i cars waiting in @; when B; ends
(B; starts). We refer to the duration as B;p. In this case, a signal controls the traffic, so
that type-i cars have priority for at least V; seconds. That is, B;o continues for at least
Vi seconds. If no type-i car arrives during V;, an event with probability e *%:, duration of
B;o = V;, and hence

P{B;y =V} = e %,

On the other hand, if any type-i cars arrive during V;, B; ¢ will be extended. The distribution
of the extended part is the same as Bf. Here, B/% denotes the duration from the starting
instant of B; to the instant when the first type-i car arrives at @);, i.e., the period during
which the bridge is empty. The Laplace transform of Bfo is easily obtained by

1 Ai
e Vi) + s

1 Vi
* - — . _(Ai+3)t - . —(A,'-}-S)V,'
foO (S) 1 _ e_AiVi ‘/0 Aze dt 1= []. € ].

Combining two cases, we have the Laplace transform of B, as follows:

i[1 — e~ QitoVi]

. AV —sVi N . — OtV IR
fho(s)=e MVig=sVi 4 foo(S) fo'(s) = e~ MtV 4 (] — e~N%) W pe (3.14)
Accordingly, the first and second moments of B are
d _, 1 — e MV)ehT
E(Bio) = _EfBi,o(s) : _ | T , (3.15)
s= ]
e |, o [eNT = NT — XTIV (T — )em AV
E(Bzo) _ FfBi,O (8) = 26A1T [ A? + ( A . (3.16)
s s=0 ] ]

4. Moments of Type-i Period
In this section, we obtain the first two moments of a type-i period, E(B;) and E(B?), when
the forced priority time V; = T, the crossing time of the bridge, using the formulation of
the Laplace transform of B, ;, obtained in the previous section.

First we consider an embedded Markov chain embedded at the instants (switch points)
when B; ends (B; starts at the same time). Let i(¢ = 1,2) be the indicator variable that
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shows which duration (B; or B,) starts. k; denotes the number of cars waiting in ); when
B; starts. Let X, be the state at (just after) the nth switch point. Then {X,} has the
Markov property. Since B; and B, appear exactly alternately, the Markov chain is periodic
with period 2. If we observe the Markov chain at every 2 embedded points, it comes down
to the aperiodic Markov chain, so it may have the steady state probabilities under some
stability conditions. Here, we assume that such modified the Markov chain has the steady
state probabilities denoted by p;x, for the state (, k;). Half the time the chain is in (1, %)
states, and half the time it is in (2, k;) states; that is 35 gpix;, = 1/2 for i = 1,2. Let
gik;,k; denotes the transition probability from state (i, k;) to (j,%;) (¢ # 7). Then we have
the system of linear equations as follows:

(Pl,O\ ( g2,0,0 9210 4220 -- \ ( Pl,o\
D11 42,01 9211 Q221 .- D1
P12 0 @202 42,12 G222 --- D12
D2y - qi00 Q110 G120 --- D20
D21 101 Q1,11 Q21 --- D21
P22 G102 Q12 Q22 --- 0 D22

Vi) L J\+)

Now, we obtain the transition probabilities, g;, ;- gik;,k; Can be expressed by

o (A\t)k
Gikiks = | —,Jc;!—e N fp, ., (2)dt

where 4,7 = 1,2,4 # 7, and fBi,ki (t) is the probability density function of B;, when k; # 0,
and the integral should be understood as Laplace-Styelties transform when k; = 0. On the
other hand,

o0
fay, () = /0 FBos, (B)edt,
which leads

i\ K d"i * *° ) —s
(CMXF o o (8) = [ ) f, et

Accordingly, we have the following relation:

(—1)%AF dhi

Qik; k; = ——E!——@f;{,hi (3) (4“1)

s=A;
Therefore, we are able to calculate the transition probabilities using the Laplace transform
of f&.,. (s) in (3.11) and (3.14). In particular,

_,\,-W_(_)_‘J'_Vi)ﬁe—)\jw + (—1)ki)\;°i dk N[l — e—(,\,~+s)v,~]
k;! kil dski X+ seQita)T

Qipk; =€ (4.2)

s=MA;j

Here, we derive the sufficient conditions of the modified Markov chain to be positive
recurrent. Now, we introduce the statements by Karlin [7].
Lemma Suppose a Markov chain is irreducible. Then the sufficient condition for the Markov
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chain to be recurrent is that there exits the sequence {y,} which satisfies the following con-
ditions:
(o o]
D TupYo Syu foru#0
=0
and
Yy —> 00  aS U —> 00,

where 1y, is the transition probability of the Markov chain.
Let us set the sequence {y,} in above lemma as

_Ju ifu>0,
W= =M ifu=0,

where M is a positive number, and consider m such that
o0
Yu>m, Y Tu,v<u. (4.3)
v=0
Since Y52, 7y, is finite and r, ¢ is positive for every u in this problem, we have
o0 o0
> Tuplho = Y Tup¥ — Mrypy < u,
= =1

for every u, and then these {y,} satisfy the above conditions for sufficient large M. Therefore
we may derive the conditions for existence of m which satisfies (4.3).
Here, from (4.1) and (3.11), for k; > 0 we get

0o 00 kj—1 dk -1 d
Z_: Ritikik; = Z k - 1 ! dski—1 dsf ”“'(s)
k;=0 kj= ny
d k,’T EAiT -1
_ i = \s ) 4.4
d fB.,]c ( )S:/\. )\J [I—Aﬂ'_’_ )‘i } ( )
Using (4.4),
o0 o0 [o o]
Do TkkYR = D D ik Dk kK
k,=0 k;=0 k.=0
kit eNT — 1
= i k; k; /\ li ] + ]
kJX_:o — AT Aj
. . . AT (eMT
(MT) (A7) ki + AT (e 1) N Xi(eM 1)- (4.5)
(1 - )\ﬂ')(l - )\jT) 1- )\jT )‘j
Then, (4.3) is equivalent to
1-— /\57' - )\jT > )\jT(e)‘iT - 1) + )\i(eAfT - 1)
(1—/\17')(1—)\‘77') v = 1-—/\jT /\j .
If
1-— )\jT — N7 >0, (46)
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then we can determine m such that m is the minimum integer which satisfies

S ATA = AD(ET = 1) (1= Ar)(1 = ) (ENT - 1)
- 1— /\,,:‘T -_— )\j'r Aj(l . /\ﬂ_ _ )\J'T) .

Hence (4.6) is the sufficient condition for the modified Markov chain to be recurrent. We
will now show (4.6) is a sufficient condition for the Markov chain to be positive recurrent.
In order to establish this, we will show that starting from some state (i, k;) after an infinite
number of type-i periods and type-j periods the expected number of cars waiting in @;
when B; starts converges to some posn',lve value.

Assume (4.6) hereafter. Let k (or k(")) be the number of cars waiting at @; (or Q;)

at the beginning of the n-th B; (or B;) period starting from (¢, kﬁo)) initially. Then the
expected number of kl(") can be evaluated using (4.5) n times as follows:

Z Z Z Z q,z k(o) k(l)q k(l) k(l) qz,kgn-l)’k(_n) q]’k(ﬂ)’k(n) kz(n)
kD=0 V=0 k(") =0 k™ =0 ' ! T
o0
= > Z % 5@ k1 77 G D) pmmD) [sik"D + sity + ]
IcJ(.l)=0 k,gn_l):O P ! '

= (585)" K + (st + t:)[(568)" " + (s08)" 2 + -+ + 1],

where
g = AT v /\,;(e)‘jT —-1)
1N T Aj ’
A Xi(edT — 1
3j ]T , tJ . .7(6 )
1 /\iT Az

Since 0 < s;5; < 1 because of (4.6),

. n)
Jim Z Z Z Z Bk @ k0 4ip® g™ q,kg"‘l),k‘.")qj,k(."),k,S")kz(
k(l)_o kD=0 k(") =0 kM=o J J

. sit; +1;
11— 5384
_ [ /\i_T /\j(e""'T - 1) + )\i(e’\iT )][(1 - /\zT)(l - AJ‘T)]
1-—- /\jT /\i AJ’ 1-— /\i’l' - /\j’l‘ ’

(4.7)

Then the left hand side of (4.7) is finite. If the Markov chain is recurrent null, the left hand
side of (4.7) does not converge. Hence if (4.6) holds, then the Markov chain can be proved
to be positive recurrent.

Note that (4.6) means that the number of arriving cars from the both hand sides during
the starting delay 7 must be less than 1. Throughout the paper, the stability condition
(4.6) is assumed to hold.

Now, we are ready to obtain the first two moments of B;. First, using the steady state
equations

o0
Pik; = X Piklii; (57 =1,2,i# J),
=0
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we have

o0 [o o] o0
> kipig; = Z Z KiDikGikik; = O O kil ; Piks- (4.8)

k] =0 J =0 k;=0 k;=0 k] =0

From (4.2), we have

Z quiv()’kj = Z k X VL V) _A K

k;j=0 kj=0 k '

N /\ Z ( ki—1 gki=1 g ). [1 _e—(A +s)V]
k - 1 U dski—1ds X + seCu+o)T

s:)\j
| d Al — e AAHov]
= MVie Vi el
= )\]V;e /\J ds )\; + (S __ )e()‘,--/\ +s)T s
S=Aj
= ﬁ(l — e—/\iVi)e/\iT
eMNT 1 eM(T-Vi) _ 1
Substituting (4.4) and (4.9) into (4.8), we get
1) 1) AT A‘(e'\"T _ 1) ez\i(T—Vi) -1
kipig, = J___k; 1 ik — Aj—————D;
I:L;o 3Pj k; :L:‘o 1— N7 + X Dik; — Aj Y DPio
AT & Aj(eMT —1) eMT-Vi) _ 1
= kipi k. d — A 5.0 4.10
1 _ /\ZT kgz:o p Sk + zA‘L 'J Az p ,0 ( )

where we use 37" pix;, = 1/2 in the last equality. In the same manner, using

S ks (k AT
i\k; — 1)g; = ———k(k—-1
I:-L_zo (ki — 1)g; ik = nr)? ( )
2 AT 2A2 AT (AT AZT -1
+/\2 T +2'r(e 1) k4 ZeMT (e : ),
1 =Xr)? - (1= A7) A
3 2)‘2 T erT Xi(T-V3) AV
kz kj(kj - l)q'i,O,lcj T{ /\.LT — et i 4 /\z(T — W)C i 1},
=0
we get
[ o]
Y ki(kj — Dpjg,
k;=0
N2 2 AT _
2 T 27‘(6
i k1.
(1_,\7-)221‘7 Dpij; + A TESYaE (1_ ) Z Di
A2NT (AT — \T —1)  2X2eNT
+ J (e A2 ) + ]Aez {AZ(T - ‘/i)e'—/\ivi + 1 _ eA,’(T—V,’)}pi,O' (4'11)
i i

In order to get the left hand sides of (4.10) and (4.11), p1o and pspo are neccessary to be
expressed by the known parameters, which seems to be difficult.
Here, we consider the special case V; = T, (¢ = 1,2). That is, the signal keeps the
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priority for one direction during the time a car needs to cross the bridge, even if no car
in that direction is waiting when the signal changes. This assumption seems to be natural

because in this case, the signal changes when no cars passes in front of sensor during time
T. When V; =T, (4.10) and (4.11) are equivalent to

s AT & Aj(edT —1 .. C
Z kjpj,kj = 1 __JA. Z kip‘i,ki + '—J_(_—'—_'——)'a (7',.7 = 1a2’7' ‘—76.7),

k;=0 iT k=0 2
and
Z kj(kj — 1)pjk;
k;j=0
Nr? & 9 T2 27 (eMT
i, k; ] k‘L i,k;
=T R L e R ey POLE
MMT(NT — \T—1) o
A AT =10 4)

By solving the above systems of linear equations, we finally get

f: kipi k. = (1 —_ )\,;T){A?T(CMT - 1) + )\i(l _ )\jT)(e)‘jT _ 1)}

Wy T (4'12)
k=0 2(1 - /\iT e AjT)/\j
S (ke 1o (LT AT = Nr)?
kizz:o kz(kz l)p‘l,ki = (1 — A%T2 — /\§7'2)
A2 Xr(eMT — 1) 4+ X(1 — N7 (T — 1) T2 N 27(eMT — 1)
(1 — AjT)z 2(1 - )\7;7' - AjT) (1 — )\,;‘7’)2 /\,;
+)‘./\ff(e)‘iT = 1)+ X1 = N7)(eMT = 1) T2 N 27 (eNT — 1)
: 2(1—/\1;7'—/\'7') (1~A'T)2 Aj
A?TZCA;‘T(G/\;:T _ )\iT _ 1) /\2 AT ( )\ T —~ 1) 413
(1= \7)2 + 3 (4.13)

On the other hand, from (3.12),(3.13),(3.15),(3.16), and when V; = T, the first two moments
of type-i period are expressed as follows:

oo 2 ( T 1)
E(Bi)=2) pix,E(Bix) = E kivik, + ———" (4.14)
k;=0 1

E(Bzz) = 2Zp"-k= 'Lk,
;=0

S k(- 1)
= 3 2 kilki — 1)pig
-2
T2 2r(eMT — 1 2eMT (eMT — \T — 1
+ 2 [(1 et (1(— AT )/\,)] Z bibig + : X? ! (4.15)

As a result, substituting (4.12) and (4.13) into (4.14) and (4.15), the first two moments of
duration of B; can be obtained. In particular,

T{N27(eMT — 1) + N1 — \jr)(eMT — 1)} -1
(1 = N7 = M)A '

E(B;) =

1
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5. Mean Waiting Time

In this section, the mean waiting time of the arriving cars to start crossing the bridge is
expressed as the function of E(B;) and E(B?), consequently, when V; = T (i = 1,2), the
mean waiting time can be calculated using the results for E(B;) and E(B?) obtained in
Section 4.

Let us consider the waiting time of a random (tagged) type-i car. In the traffic model,
the waiting times of the type-i cars (a tagged car) consist of two elements. One is the time
until B; starts (If the tagged car arrives at @Q; during Bj, j # 4, this element is not zero.),
and the other is the amount of starting delays of the type-i cars in front of the tagged
car, including the starting delay of the tagged car. The former is equivalent to the forward
reccurence time of B;, with expectation E(B})/2E(B;), and is experienced by these cars
with probability F(B;)/(E(B;) + E(B;)). Thus, this part of the mean waiting time is equal
to B(B2)/2(E(B;) + E(B))).

Now, we consider the second element, the amount of starting delays of the type-i cars
in front of the tagged car. As mentioned in section 3, B; consists of two part, i.e., the
period during which type-i cars are waiting, and the period during which €); is empty but
there are still some type-i cars crossing the bridge. The arriving cars during the waiting
period have starting delays, but ones during crossing period can enter the bridge without a
stop. Note that if there is no car waiting when B; starts, that B; is totally included in the
crossing period. If we remove the crossing periods of B; from the process, the remaining
process consists of the waiting periods of B; and the waiting and crossing periods of Bj,
which can be regarded, for the type-i cars, as the process of an M/G/1 vacation system
with the exhaustive service, with the arrival rate is J;, service times are 7, and vacation
periods with first and second moments, F(B;) and E(B?). Here we utilize the stochastic
decomposition property proved by Boxma and Groenendijk [3]. That is, the amount of work
in the vacation system at an arbitrary epoch, U, is distributed as the sum of the amount of
work in the ‘corresponding’ (without vacations) M/G/1 system at an arbitrary epoch, V,
and the amount of work in the vacation system at an arbitrary epoch in a vacation interval,

Y. Consequently, we have
E(U)=E(\V)+ E(Y).

Since the backward reccurence time of the vacation period for type-i cars is equal to
E(B})/2E(B;), and the type-i cars arrive at (; according to an independent Poisson process
with rate A;, we get

2E(B;)
E(V) can be easily obtained by
Aﬂ'z
B =)
and then we have
MNTE(B3) A2

EWU) = + .

As Poisson arrivals see time averages, the expected starting delay which the tagged car
experiences is the sum of E(U) and 7, the starting delay of the tagged car itself, if the
tagged car arrives at Q; during the waiting periods of B; or type-j periods. However, the
tagged car arrives during the crossing periods of B;, then it does not wait to enter the

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Mean Waiting Times of the Alternating Traffic 453

bridge. That probability is E(BfF)/(E(B;) + E(B;)) when V; =T, because E(B;) is equal
to E(BF) in the case of V; = T. Hence, the latter part of the mean waiting time is equal to
(E(U) +m){1 - E(BY)/(E(B:) + E(B;))}-

From the above discussion, the mean waiting time of type-i cars, E(W;), can be expressed
by

E(B?) E(BY)
B0%) = samyerm T EO 1 s ¢ ) -0
_ E(B}) TE(B}) 72 e
~ 2(E(B;) + E(By)) [QE(Bj) T T] [A, E(B;) + E(Bj)] '

Then, we can obtain the mean waiting time by substituting (4.14) and (4.15) into (5.1)
when V; =T.

6. Concluding Remarks

In this paper, we modeled the alternating traffic crossing a narrow one-lane bridge on a
two-lane road in whcih the signal controls priorities. We obtained the closed forms for the
first and second moments of type-i periods (¢ = 1,2) in the special case V; = T'. This case is
resonable since it corresponds to the situation where the signal changes when no cars passes
in front of sensor during the time it takes cars to cross the bridge. Then, we expressed
the mean waiting time of the cars to start crossing the bridge as the function of these two
moments using the stochastic decomposition property.

The methodology in this paper may be extended to get the higher moments of the wait-
ing time of the cars to start crossing the bridge, that is, the nth moment of the waiting time
can be obtained using the (n + 1)st and lower moments of type-i periods (i = 1,2).
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