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Abstract We analyze alternating traffic crossing a narrow one-lane bridge on a two-lane road. Once a 
car begins to cross the bridge in one direction, arriving cars from the other direction must wait, forming a 
queue, until all the arrivals in the first direction finish crossing the bridge. Such a situation can often be 
observed when road-maintenance work is carried out. Cars are assumed to arrive at the queues according 
to independent Poisson processes and to cross the bridge in a constant time. In addition, once cars join 
the queue, each car needs a starting delay, a constant, to start crossing the bridge. We model the situation 
where a signal controls the traffic so that the signal gives a priority to one direction at least for a fixed time. 
Under an assumption, the first two moments of a period during which the signal keeps giving a priority to 
one direction are obtained. Using a stochastic decomposition property the mean waiting times are obtained 
of cars to start crossing the bridge from each direction. 

1. Introduction 
In this paper, we analyze alternating traffic crossing a narrow one-lane bridge on a two- 
lane road. Once a car begins to cross the bridge in one direction, arriving cars from the 
other direction must wait, forming a queue, until all the arrivals in the first direction finish 
crossing the bridge. Such a situation can often be observed when road-maintenance work 
is carried out. Cars are assumed to arrive at  the queues according to independent Poisson 
processes and to cross the bridge in a constant time. In addtion, once cars join the queue, 
each car needs a starting delay, a constant, to start crossing the bridge. 

If the bridge is short enough to see the other side, a signal control is not necessary. The 
car at the head of the queue will start when it finds that there is no car of the other direction 
on the bridge. When there are no cars either on the bridge or in the queues, an arriving car 
in either direction will enter the bridge without a stop. Chatani [4] analyzed this case and 
obtained the mean queue lengths when all the arrivals in the other direction finish crossing 
the bridge, assuming the arrival rates from each side are equal. 

On the other hand, if the bridge is too long (or winding) to be looked over, signals are 
necessary on both sides to control the traffic. We consider this case. Suppose that two 
sensors are set on both sides of the bridge. Consider a period during which right-hand-side 
traffic has a priority. If no car from the right-hand direction passes in front of the sensor 
during the time which a car in that direction takes to cross the bridge (there is no car in the 
bridge at  this instant), the signal changes, giving the priority to the left-hand-side traffic. 
Once the signal changes, it does not change again until the left-hand side traffic disappears. 
Even if there is no car waiting in the left-hand side queue when the signals change, the left- 
hand side retains priority at least during a fixed time, called 'a forced priority time'. If any 
cars arrive from the left-hand side during the forced priority time, the signal is controlled by 
the same rule mentioned above. Otherwise the signal again changes to the right-hand side 
traffic when the forced priority time passes. For this model, we obtain the mean waiting 
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times of the arriving cars to start crossing the bridge. 
In the 1960~1, the vehicle-actuated traffic signal control models were analyzed by Darroch, 

Newel1 and Morris [5], and Newel1 and Osuna [B]. Independently, the alternating priority 
queues were also analyzed by Avi-Itzhak, Maxwell and Miller [2], and Stidham [g]. These 
works became the basis of polling systems, in which a single server attends multiple queues, 
and many variations of the polling models have been analyzed recently . Alfa and Neuts [l] 
modeled platooned arrivals in road traffic using a discrete-time Markovian Arrival Process 
(MAP), and confirmed the intution that ignoring correlation in the arrival process results 
in an underestimation of the mean queue length. 

The original model of our study, which incorporates neither signal control nor starting 
delays, was proposed and analyzed by Greenberg, Leachman and Wolff [6]. They made the 
approximation that cars in queue cross the bridge together in a constant time, which easily 
leads to the first and second moments of the lengths at  embedded points and the mean 
delay. In this paper, we introduce starting delays and make the model more realistic. 

The remainder of the paper is organized as follows. In the next section, we present the 
queueing model. In order to get the mean waiting times, the first and second moments of 
a period during which the signal keeps priority for one direction are required. In Section 
3, we represent these two moments, conditioned on the numbers of waiting cars at the 
beginning of these periods. These conditions are removed under an assumption in Section 
4. In Section 5, the mean waiting times of the cars to start crossing the bridge are expressed 
as the function of these two moments, using a stochastic decomposition property for the 
amount of work. Finally, we make concluding remarks in Section 6. 

2. Model Description 
The queueing model under consideration is a modified version of the simple traffic model 
by Greenberg, Leachman and Wolff [6], which incorporates neither the signal control nor 
starting delays. 

Figure 1. Alternating Traffic Model 

Suppose we have a narrow one-lane bridge on a two-lane road as shown in Figure 1. 
Once a car begins to cross the bridge in one direction, arriving cars from the other direction 
must wait, forming a queue, until all the arrivals in that direction finish crossing the bridge. 
Queues of right-hand-side traffic and left-hand-side traffic will be referred to as Qi and Q% 
respectively. Cars arriving at  Qi, i = 1,2, will be referred to as type-i cars. Cars arrive at  
the queues according to independent Poisson processes. Denote by Ai the arrival rate at Qi, 
i = 1,2. Let Bi, i = 1,2, be the durations of a period during which type-t cars have priority, 
simply called a 'type-i period'. Once type-i period ends, type-j(j # i) cars in queue initiate 
type-j period. Each car in queue needs the starting delay r seconds, that is, if there are k 
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cars waiting in Q, when Bj (j # i) ends (Bi starts at the same time), it takes k r  seconds 
for the kth car to start crossing the bridge. In this case, if the (k + 1)st car arrives in k r  
seconds from the starting point of Bi, then the (k + 1)st car also needs the starting delay. 
Similarly, if the (k + 2)nd car arrives in (k + 1)r seconds from the starting point of Bi. 
then it also needs the starting delay, and so on. Once cars start crossing the bridge, they 
complete crossing the bridge T seconds later, a constant, independing of the number of cars 
in the bridge. An arriving type-? car that finds Qi empty but there are still some type-? 
cars in the bridge, can start crossing the bridge without stopping, and takes T seconds to 
cross the bridge. Bi will be extended as long as the next type-i car arrives while type-i cars 
are crossing the bridge. Even if there is no car in Qi when Bj ends, the signal controls the 
traffic so that type-i cars have a priority at least V, seconds (the forced priority time), that 
is, even if no type-i car arrives during V,, type-j cars can not cross the bridge during this 

iod. If the type-i cars arrive during V,, then 5 will be extended in the same manner; 
erwise B, ends V, seconds later. 
In the following three sections, we analyze the queueing model and obtain the mean 

aiting time of the cars to start crossing the bridge for the special case V, = T, (i = 1,2). 

. Conditional Duration of Type-i Period 
In this section, we formulate the Laplace transform and the first two moments of Bi ,k j  , 
the durations of a period during which the bridge is continuously occupied by type-i cars, 
conditioned that there are h cars waiting in Qi when Bi starts. The conditions are removed 
in the next section. 

TheCasek>O 
First, we consider the case ki > 0. As mentioned in the previous section, we have to take 
the starting delays into account when Qi is not empty. Hence we divide the period B,,^ into 
two parts, i.e., the duration of the period where type-i cars are waiting in Qi (referred to 

the duration where Qi is empty but there are still some type-i cars crossing 
ferred to as B:), that is, 

Note that the distribution of B: is independent of ki. Suppose ki = k > 0. Let NJ^ be the 
number of arriving cars during B$, and tl and t, (S = 2,3, , N,?) be the arrival time 
of the 1st car from the beginning of B z  and the inter-arrival time between the ( S  - 1)st 
and sth cars, respectively. Since type-i cars arrive at the queues according to independent 
Poisson processes with rate Ai, 
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where the last equality can be proved using the mathematical induction. N Z  = n means 
B 5  = (k + n ) ~ ;  that is, 

Then the Laplace transform of BK is given by 

and the first and second moments of B 5  are obtained by 

Since (3.1) is still a probability distribution even when r is replaced by rz ,  we have 

From the first and second derivatives of (3.5) at z = 1, and (3.3) and (3.4), the first and 
second moments of B$ are given by 

Equations (3.6) and (3.7) correspond to the first two moments of the delay cycle in M / D / l  
queue (see sec. 1.2 in Takagi [10]), if we set the service times of the first customer and the 
other customers to k r  and r, respectively. 

Now we consider the Laplace transform of B:. Let N: be the number of arriving cars 
during B:, and ti and ts (S = 2,3,-  ..,TV,?) be the arrival time of the 1st car from the 
beginning of B: and the inter-arrival time between the (S - 1)st and sth cars, respectively. 
Given N? = n, B? g T + tl  + t2 + + tn, where tS,s = 1 , 2 , - - - , n ,  are i.i.d. with a 
truncated exponential distribution. Hence the Laplace transform of B: is given by 

and the first two moments of BÂ is obtained by 
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which coincide with the results in Greenberg, Leachman and Wolff [6]. Since B$ and Bf 
are independent each other, we have the Laplace transform of Bik and the first two moments 
of duration of Bi,t using (3.2) and (3.6) (3.10): 

3.2. The Case k,. = 0  
Next we consider the case ki = 0, where there is no type-i cars waiting in Qi when By ends 
(Bi starts). We refer to the duration as Bi,O- In this case, a signal controls the traffic, so 
that type-i cars have priority for at least K seconds. That is, Bio continues for at least 
K seconds. If no type-z car arrives during K, an event with probability e A f i ,  duration of 
Bifl = K, and hence 

p{BiyO = K} = e-Aiv'. 

On the other hand, if any type-i cars arrive during V, Bio will be extended. The distribution 
of the extended part is the same as B:. Here, Bfy denotes the duration from the starting 
instant of Bi,0 to the instant when the first type-z car arrives at Qi, i.e., the period during 
which the bridge is empty. The Laplace transform of BF~ is easily obtained by 

Combining two cases, we have the Laplace transform of Bio as follows: 

Accordingly, the first and second moments of Bio are 

4. Moments of Type-z Period 
In this section, we obtain the first two moments of a type-i period, E (Bi) and E (B:), when 
the forced priority time V = T, the crossing time of the bridge, using the formulation of 
the Laplace transform of B,,& obtained in the previous section. 

First we consider an embedded Markov chain embedded at the instants (switch points) 
when By ends (Bi starts at the same time). Let i(i = 1,2) be the indicator variable that 
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shows which duration (Bl or B2) starts. denotes the number of cars waiting in Q, when 
B, starts. Let Xn be the state at (just after) the nth switch point. Then { K }  has the 
Markov property. Since Bl and B2 appear exactly alternately, the Markov chain is periodic 
with period 2. If we observe the Markov chain at every 2 embedded points, it comes down 
to the aperiodic Markov chain, so it may have the steady state probabilities under some 
stability conditions. Here, we assume that such modified the Markov chain has the steady 
state probabilities denoted by p* for the state (i, ki) . Half the time the chain is in (1, kl) 
states, and half the time it is in (2, k2) states; that is Er-opi,ki F = 112 for i = 1,2. Let 
qi,h,kj denotes the transition probability from state (i, ki) to (j, 4) (i  # j). Then we have 
the system of linear equations as follows: 

Now, we obtain the transition probabilities, qi,k,,^. qi,ki,kj can be expressed by 

where i, j = 1,2,  i # j, and fa (t) is the probability density function of Bik  when k, # 0, 
and the integral should be understood as Laplace-Styelties transform when fc = 0. On the 
other hand, 

which leads 

Accordingly, we have the following relation: 

Therefore, we are able to calculate the transition probabilities using the Laplace transform 
off;. ( S )  in (3.11) and (3.14). In particular, 

a,k, 

Here, we derive the sufficient conditions of the modified Markov chain to be positive 
recurrent. Now, we introduce the statements by Karlin [7]. 
Lemma Suppose a Markov chain is irreducible. Then the sufficient condition for the Markov 
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chain to be recurrent is that there exits the sequence {y^} which satisfies the following con- 
ditions: 

where rUv is the transition probability of the Markov chain. 
Let us set the sequence {yu}  in above lemma as 

where M is a positive number, and consider m such that 

Since SEi r u v v  is finite and r U o  is positive for every U in this problem, we have 

for every U ,  and then these {yu}  satisfy the above conditions for sufficient large M. Therefore 
we may derive the conditions for existence of m which satisfies (4.3). 

Here, from (4.1) and (3.11), for ki > 0 we get 

Using (4.4), 

Then, (4.3) is equivalent to 
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then we can determine rn such that m is the minimum integer which satisfies 

Hence (4.6) is the sufficient condition for the modified Markov chain to be recurrent. We 
will now show (4.6) is a sufficient condition for the Markov chain to be positive recurrent. 
In order to establish this, we will show that starting from some state (i, hi) after an infinite 
number of type-i periods and type-j periods the expected number of cars waiting in Qi 
when Bi starts converges to some positive value. 

Assume (4.6) hereafter. Let d n  (or p) be the number of cars waiting at Qi (or Qj) 

at the beginning of the n-th B, (or Bj) period starting from (i, @) initially. Then the 
expected number of k p  can be evaluated using (4.5) n times as follows: 

where 

Since 0 < Sisj  < 1 because of (4.6), 

00 00 00 00 

Then the left hand side of (4.7) is finite. If the Markov chain is recurrent null, the left hand 
side of (4.7) does not converge. Hence if (4.6) holds, then the Markov chain can be proved 
to be positive recurrent. 

Note that (4.6) means that the number of arriving cars from the both hand sides during 
the starting delay r must be less than 1. Throughout the paper, the stability condition 
(4.6) is assumed to hold. 

Now, we are ready to obtain the first two moments of B,. First, using the steady state 
equations 
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From (4.2), we have 

00 (-Aj)'jP1 dkj-1 d A,[l - e - ( A i + ~ ) K ]  

+ % E  
kj=l  (kj - l)! dskj-1 ds A, + s e ( A i + ~ ) T  s = ~ j  

Substituting (4.4) and (4.9) into (4.8), we get 

where we use ~ & o p ~ , k i  = 112 in the last equality. In the same manner, using 

we get 

In order to get the left hand sides of (4.10) and (4.11), p1,o and p2,o are neccessary to be 
expressed by the known parameters, which seems to be difficult. 

Here, we consider the special case = T ,  (2 = 1,2). That is, the signal keeps the 
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priority for one direction during the time a car needs to cross the bridge, even if no car 
in that direction is waiting when the signal changes. This assumption seems to be natural 
because in this case, the signal changes when no cars passes in front of sensor during time 
T. When V, = T, (4.10) and (4.11) are equivalent to 

and 

By solving the above systems of linear equations, we finally get 

On the other hand, from (3.12),(3.13),(3.15),(3.16), and when V, = T, the first two moments 
of type-i period are expressed as follows: 

As a result, substituting (4.12) and (4.13) into (4.14) and (4.15), the first two moments of 
duration of Bi can be obtained. In particular, 
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5. Mean Waiting Time 
In this section, the mean waiting time of the arriving cars to start crossing the bridge is 
expressed as the function of E(Bi) and E(B?), consequently, when K = T (i = 1,2), the 
mean waiting time can be calculated using the results for E(Bi) and E(B:) obtained in 

ection 4. 
Let us consider the waiting time of a random (tagged) type-i car. In the traffic model, 

the waiting times of the type-z cars (a tagged car) consist of two elements. One is the time 
until Bi starts (If the tagged car arrives at Qi during Bj, j # i, this element is not zero.), 
and the other is the amount of starting delays of the type-? cars in front of the tagged 
car, including the starting delay of the tagged car. The former is equivalent to the forward 
reccurence time of B,, with expectation E(B;)/~E(B.), and is experienced by these cars 
with probability E(Bi)/(E(Bi) + E(Bj)). 'Thus, this part of the mean waiting time is equal 
toE(B])/2(E(Bi) + E(Bj)) 

, we consider the second element, the amount of starting delays of the type-i cars 
in front of the tagged car. As mentioned in section 3, Bi consists of two part, i.e., the 
period during which type-z cars are waiting, and the period during which Qi is empty but 

some type-i cars crossing the bridge. The arriving cars during the waiting 
period have starting delays, but ones during crossing period can enter the bridge without a 

if there is no car waiting when B, starts, that Bi is totally included in the 
If we remove the crossing periods of Bi from the process, the remaining 

nsists of the waiting periods of -Bi and the waiting and crossing periods of Bj, 
garded, for the type-i cars, as the process of an M/G/l vacation system 
tive service, with the arrival rate is A,, service times are T, and vacation 
t and second moments, E(+) and E#). Here we utilize the stochastic 

decomposition property proved by Boxma and Groenendijk [3]. That is, the amount of work 
tion system at an arbitrary epoch, U, is distributed as the sum of the amount of 

'corresponding' (without vacations) M/G/l  system at an arbitrary epoch, V, 
the vacation system at an arbitrary 

E(V) = E(V) +E(Y) .  

Since the backward reccurence time of the vacation period 
E(B:)/2E(Bj), and the type-i cars arrive at Q, according to an 
with rate A,, we get 

. A ~ E ( B ~ ;  
E(Y}  = 

2E(B,) 
E (V) can be easily obtained by 

and then we have 
\rE (B]) &r2 

E(U) = + 
2E(Bj) 2(1 - .Air)' 

As Poisson arrivals see time averages, the expected starting 
experiences is the sum of E(U) and r, the starting delay of 

epoch in a vacation interval, 

for type-? cars is equal to 
independent Poisson process 

delay which the tagged car 
the tagged car itself, if the 

tagged car arrives at Q, during the waiting periods of Bi or type-;' periods. However, the 
tagged car arrives during the crossing periods of B,, then it does not wait to enter the 
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bridge. That probability is E (BP)/ (E (Bi) + E (Bj)) when V, = T, because Â£(Bigo is equal 
to E ( B ~ )  in the case of V = TT. Hence, the latter part of the mean waiting time is equal to 
(E(U)  + r ){l-  E(BF)/(E(Bi) + B(Bj))]. 

From the above discussion, the mean waiting time of type-i cars, E(Wi), can be expressed 
by 

Then, we can obtain the mean waiting time by substituting (4.14) and (4.15) into (5.1) 
when K = T. 

6. Concluding Remarks 
In this paper, we modeled the alternating traffic crossing a narrow one-lane bridge on a 
two-lane road in whcih the signal controls priorities. We obtained the closed forms for the 
first and second moments of type-i periods (i = 1,2) in the special case Q = T. This case is 
resonable since it corresponds to the situation where the signal changes when no cars passes 
in front of sensor during the time it takes cars to cross the bridge. Then, we expressed 
the mean waiting time of the cars to start crossing the bridge as the function of these two 
moments using the stochastic decomposition property. 

The methodology in this paper may be extended to get the higher moments of the wait- 
ing time of the cars to start crossing the bridge, that is, the nth moment of the waiting time 
can be obtained using the (n + 1)st and lower moments of type-i periods (a = 1,2). 
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