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Abstract We consider an M/GI/l/N queue with vacation time and exhaustive service discipline. We 
show that the embedded Markov chain formed by the customer departure epochs makes the analysis simple 
and it enables us to find an explicit solution for the server-vacation queue. We also find an explicit solution 
for the ordinary (non-vacation) queue. 

1. Introduction 
The time division multiple access (TDMA) scheme is practical in the areas of communi- 
cations. Communication engineers frequently encounter a teletraffic issue how to design a 
buffer capacity in the TDMA environment (see Stuck and Arthurs [17]). The issue then 
necessiates a single-server finite capacity queue with vacation time and exhaustive service 
discipline. 

By vacation time, we mean that the server becomes unavailable for occasional intervals 
of time, and by exhaustive we mean that customers are served continuously until there is 
no customer in the system (see Doshi [5], and Takagi [18]). The vacation time corresponds 
to a constant slotted time period in the TDMA system. 

Under the exhaustive vacation policy, the well known stochastic decomposition formula 
(see Doshi [15], Fuhrmann and Cooper [8], Kroese and Schmidt [l01 and Miyazawa [15]) 
will be useful for an infinite capacity queue. However, if we would like to evaluate the loss 
probability we have to  treat a finite capacity system rather than infinite capacity systems. 

Assuming Poisson input and a finite capacity queue Lee [ll, 121 already provided a nu- 
merical algorithm for this system via the standard embedded Markov chain technique. As 
the embedded points, he took the service completion epochs and server vacation comple- 
tion epochs. To obtain the queue length distribution at an arbitrary time, he applied the 
supplementary variable technique and the sample biasing technique. 

Here, we treat the same queueing system as in Lee [l11 but present a simpler analysis 
than Lee's. We show that service completion epochs are enough for the queue length to 
form an embedded Markov chain (server vacation completion epochs are redundant). This 
simpler analysis enables us to find an explicit solution for the steady-state queue length 
distribution. To the  best of the authors9 knowledge, there are no results on the explicit 
solution for finite capacity queues. A main contribution of the paper is then to provide 
the explicit solution. Combining a couple of simple qualitative results, we straightforwardly 
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obtain the queue length distribution at an arbitrary time from which engineers can evaluate 
their most interesting performance measures. 

This paper is organized as follows. Section 2 describes the queueing model and introduces 
the notation. In Section 3, we derive a recursive scheme for the steady-state queue-length 
distribution at departure epochs. Note that as embedded Markov chain, we use only the 
departure epochs (as opposed to both departure and vacation completion epochs by Lee 
[l l]), and this simplification leads to an explicit solution for the queue length distribution 
at departure epochs. Section 4 gives a probabilistic argument to obtain the steady-state 
queue length distribution at an arbitrary epoch. In the last seciton we give some concluding 
remarks, including our results for an infinite capacity queue and an ordinary (non-vacation) 
queue, by taking the limits. 

2. The model 
We consider an M/GI/l/N queue, where the input process is Poissonian with rate A, the 
service times form a sequence of i.i.d. random variables with distribution function S(x) and 
N equals the number of waiting places in the queue, including the space for the customer 
that may be in service. We assume that accepted customers by the system are served by 
a single server exhaustively, i.e. the server serves the queue continuously until the queue 
is empty, where a customer is accepted by the system if the number of customers in the 
system is less than N. Whenever the queue becomes empty the server starts a vacation with 
distribution function V(x). If the queue is still empty upon his return, he takes another 
independent vacation with distribution function V(x) . We assume furtheron that the service 
discipline is non-preemptive and the service order is FIFO. 

By f j  and hj  we denote the probabilities that j customers arrive during a service time 
S and a vacation time V, respectively. Hence 

By idle period we denote the time between the time instant when the system becomes empty 
and the time instant when the server starts service again. The probability that j customers 
arrive (and are accepted) during such an idle period will be denoted by i p j  and is given by 

where 

Furtheron we define gk  by 
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3. The queue length distribution at a departure epoch 
By 71-j, j = 0, . , N - 1, we denote the steady state probability that j customers are left in 
the system at a departure epoch of a customer, i.e. if to, t l ,  - - are the departure epochs of 
the customers and Lt is the number of customers in the system at time instant i, then 

71-, = lim P(Ltm = j), j = O ; . . , N - 1 .  
m+oo 

It is easy to see, that TT, satisfy the following equations 

and the normalization condition 
N- l  

EÂ¥",=l 
,=o 

Remark 3.1 The above described departure-epoch embedded Markov chain was consid- 
ered for infinite capacity queues in Cooper [3]. 

Remark 3.2 In Lee [Ill, where also vacation completion epochs are considered, the prob- 
abilities pj and qj were defined as 

p, = lim P(Ltm = j,L = l),  j=Q,... , N - l ,  
mÃ‘ro 

qj = lim P(Ltm = j,k = 0), j = 0 , s - - ,  N, 
m + m  

where & = 0 or 1 corresponding to whether t is a vacation completion epoch (& = 0) or a 
service completion epoch (& = 1). The probabilities 71-j are different from the probabilities 
p j .  It can be shown that the relationship is given by 

As an example consider the case N = 2. In the setting of Lee [l l] in order to obtain the 
queue length at a departure epoch the following set of equations has to be solved. 

whereas in our case only the set 

has to be solved. 
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We will solve equations (4) and (5) explicitly in the sequel. 

Lemma 3.1 It holds that 

with 

Proof: From equation (4) for k = N - 2 and equation (5) one can eliminate TN- l .  Hence 
the new set of equations writes as 

After n eliminations the equations (4) have the following form: 

This can be shown by induction on n,  where n = 1 is given by (9) and (10). For n - 1 one 
has the equations 

Multiplying (14) by (-go) and adding to (13) multiplies by an for k = N - 1 - n yields (12). 
Hence after N - 1 manipulations one gets the remaining two equations 
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from which the assert ion follows. 

Lemma 3.2 The coefficients ai? defined recursively by (8), are explicitly obtained as 

j 

where Afk is the set of all j-tuples 5 = (Sl7 , S,} with 5, E N ( i  = 1, , j ) ,  E Si 5 k 
i= 1 

for each k >, j 2 l and gsO = 1 for each k >, 0.  By N we denote the set of natural 
5̂ 

numbers, i.e. N = {l ,  2, - -}. 
Example 3.1 In order to make the definition of A? clear, we will give two examples: 

Proof of Lemma 3.2: (by induction on n)  
For n = 2: 

For an one gets 

an = 

- 
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Lemma 3.3 It holds that 

where ~f~ is the set of all j-tuples S = ( S l ,  , S j )  with Sl No = N U {O}, Si 6 N 
j 

( i  = 2 , - - - ,  j ) ,  '̂ Si <: k for each @ j - 1 >0 and X' C&,, = 1 for each k 2 0 .  
i= l GB? 

Proof: Combining Lemma 3.1 and Lemma 3.2 one gets 

Lemma 3.4 For 1 < n N - 1 it holds that 

where By is the set of all j-tuples S = ( S l ,  , S j )  with & â No, Si â N (i  = 2, , j )  and 
J 

Y , S i = k f  or each k > j - 1. 
i= 1 

Proof: (by induction on n)  
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From (4) for k = 0 we get 

and hence 
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which proves the assertion for n = 1. From (4) for k = n - 1 (l < n < N - l) we get 

and hence 

which completes the proof. D 

Combining Lemma 3.3 and Lemma 3.4 yields the following theorem. 

Theorem 3.1 T h e  probabilities tha t  there are n cus tomers  left a t  a departure epoch are 
explicitly obtained a s  

71-0 = 
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Example 3.2 Let N = 5 .  Using (20) one can easily obtain say 7r2: 

Remark 3.3 We can apply the same technique to the finite capacity queue without va- 
cation to obtain the explicit solution for the probabilities that there are n customers left at 
a departure epoch. This can be easily seen by setting 

Remark 3.4 Via transform-free method, Niu and Cooper [l61 derived the waiting time 
distribution in terms of ok. Here, is the stationary probability that there are k customers 
waiting in the queue immediately after a service-start epoch. Note that crk is given by 

and hence given explicitly. 

4. The queue length distribution at an arbitrary time in steady state 
In this section we will derive the probabilities 7rJ7 that there are j customers in the system 
at an arbitrary time in steady state (j = 0, - - , N). 

Let p" be the probability that the server is busy, then the following lemma holds. 

Lemma 4.1 It holds that 
p' = A ( 1 -  +)E(S), 

where TT; is the probability that N customers are in the system, and E(S) is the expected 
service time. 

Proof: We restrict ourselves to only the service facility (excluding the waiting room). By 
applying the Poisson Arrivals See Time Averages (PASTA) property (see Wolff [19]), we see 
that TT; is also the probability that N customers are in the system just before an arrival 
epoch. Hence the rate A ( 1  - 6) is the arrival rate of customers accepted by the system, 
and it is also the throughput of the service facility. The mean number of customers in the 
service facility is equal to p". Applying Little's law, we then obtain (22). 

The following theorem will link ~ r &  with TTO which is the probability that no customer is 
left in the system at a departure epoch. 

Theorem 4.1 The probability that the server is busy (not on vacation) is given b y  
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where E(V) is the expected vacation time. 

Proof: Let us consider two point processes, where the first one is formed by the beginning 
epochs of busy periods and the second one by the end epochs of busy periods. By be and 
Age we denote the rates (expected number of points in a unit time interval) of these two 
point processes, respectively. Obviously, Abe = Aee and it holds that 

The first equation can be seen by noting that (1 - p')/E(V) is the rate of the point 
process formed by the time instants where the server returns from a vacation and 1 - h. 
is the probability that the system is not empty anymore, which means that a busy period 
starts. The second equation can be seen by noting that pl/E(S) is the rate of the point 
process formed by the departure epochs of customers (i.e. service completion epochs) and 
no is the probability that no customer is left in the system, which means that a busy period 
ends. By setting Abe = Ape the assertion follows. 

Remark 4.1 There are several ways to prove Theorem 4.1 more rigorously. One way is 
to consider the relationship 

E(B) 
= E(B) + E ( I ) ~  

where B is a typical busy length and I is a typical idle length. Let S, Sl, S2, - - be a sequence 
of i.i.d. service times with distribution function S(x) and V, Vl, V2, be a sequence of 
i.i.d. vacation times with distribution function V(x). Then, 

AYl K2 
B =  ySi and I = ~ , v , ,  

1= l 1= l 

where I<l (K2) is the random number of services (vacations) during a busy (idle) period. 
Clearly, I<l and Ic2 are geometric distributed with parameters 71-0 and 1 - ho, respectively. 
Applying Wald's identity yields 

E(S) E(B) = - E(V) and E(/)  = -. 
no 1 - h. 

Inserting (27) into (26) completes the proof. 
Note also, that (27) can be obtained via Abe and Aee by the relationship 

P' 1 --p' E(B) = - and E(I) = -. 
A e e  ^be  

By using Lemma 4.1 and Theorem 4.1 we can now calculate (1 - G), the probability 
that a customer is being accepted by the system, 
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Because of the PASTA property, we see that TT: is also the probability that there are j 
customers in the system just before an arrival. Thus, the generalized version of Burke's 
theorem (see Burke [l], Gebhardt [g], Cohen [2], Cooper [4]) is applied to get 

* 

Substituting (28) into (29) we obtain the following theorem. 

Theorem 4.2 The queue length distribution { T T J ; ~  = 0 , -  , N} at an arbitrary time in 
steady state is obtained as 

(1 - hop- I  
TT; = 1 -  

E(V)ro + E(S)(l - ho) ' 

Remark 4.2 By inserting (20) into (30) and (31) we obtain an explicit solution for the 
queue length distribution at an arbitrary time in steady state. 

Remark 4.3 Equations (30) and (31) are seen to coincide with equation (9) given in Lee 
[ l l ] .  Note that the calculation of {TT,; i = 0, , N - l} given by (4) and (5) is simpler than 
the calculation of {p& i = 0, - - , N - l} in Lee [Ill ,  and that the argument for deriving {q} 
is fairly lengthy in Lee [ill. We obtained a more efficient way to calculate the probabilities 
{TV*-i=O, ... 

2 ' 7 NI .  

Remark 4.4 From (30) and (31) we can straightforwardly obtain the Laplace-Stieltjes 
transform of the waiting time distribution (see Frey and Takahashi [7] for a discussion on 
it). 

5. Concluding remarks 
We considered an M/ GI/ l /N queue with vacation time and exhaustive service discipline. 
We presented a simple analysis to obtain the queue length distribution explicitly. It should 
be noted that our solution technique can be also used for a finite capacity queue without 
vacations (see Remark 3.3). 

Our results coincide with the results in Lee [l11 but require much less computational 
effort. Furtheron the limits of our quantities (without vacation or infinite waiting room) 
coincide with known results which can be seen in the following. 

1. We will consider the case of an M/GI/l/N queue without vacation. If the vacation 
period is deterministic, then equations (30) and (31) become 

where we write r j (V)  ($(V)) instead of TTj (TT:) to emphasize that the probabilities TT, (TT;)  

depend on V ( j  = 0 , - - - ,  N - l (N)) .  By letting V -+ 0 we obtain 

lim $(V) = ^Â (0) j = o ,  . . . ^ - l  
V+O TO(()) + p 7  

lim G ( V )  = 1 - 
1 

v+o no@) + P' 
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which coincide with the results given in Gebhardt [g] and Cooper [4]. 

2. We will consider the case of an  M/GI/l/oo queue with vacation times, i.e. the capacity 
of the queue is unlimited. As above, we will write ? (N)  (Â¥̂ (A'") instead of TT, (TT:) to 
emphasize that  the probabilities TT) (TT:) depend on the capacity N ( j  = 0, - - , N - l (N) ) .  

y using Burke's theorem (see Burke [l] and Cooper [4]) and the PASTA property (see 
Wolff [19]) we have to show 

lim ((N) = 7rj(oo), j = 0, l , .  . . 
N->m 

Following the arguments in the proof of Theorem 4.1 we see that 

holds for the infinite capacity queue and hence 

Hence equation (30) becomes 

v , (N)( l  - ho)A-l 
lim ( N )  = lim = 1im r ,(N) 

N+m N - + m  E(V)va(N) + E(S) ( l  - ho) N+W AE(V)ro(A') 
1 - h. + f' 

= ^.y^oo)) J = 0 , 1 , - - - .  

Finally, let us consider a single server queue with finite waiting room and with server 
vacations under a general vacation policy. The service policy may be arbitrary as long as it 
is work-conserving and fixed. By Qa we denote the input process (which is a marked point 
process, where the marks are formed by the service times) of the system, by Na its arrival 
process, by W(t)  the workload a t  time t and by Lit) the queue length a t  time t .  We assume 
that the arrival process is simple and has a finite and positive intensity X. We assume 
furtheron that  Ta, {W(t)}t,-v and {LIT}},& are jointly stationary under a probability 
measure P (see Franken et al. [6] and Miyazawa [l51 for details of those definitions). Using 
the rate conservation law (see Miyazawa [13]) and equations (2.5) and (2.6) of Miyazawa [l41 
we prove in a further paper that Lemma 4.1 and equation (29) which is given by Gebhardt 
[g] for the M/G/l/N-queue, are also valid for this more general setting. 

For further research, we think about a simple analysis for the M/GI/ l /N queue with 
vacation time and limited service discipline, where our approach will be based on the service 
completion epochs only. 
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