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~ b ~ t m c t  A generalized M/G/l  queueing system is considered where the efficiency of the server varies 
as the number of customers served in a busy period increases due to server fatigue or service enforcement. 
More specificallyl the k-th arriving customer within a busy period has the random service requirement Vk 
where the 0-th customer initiates the busy period and Vk (k = 0, 1 ,2 ,  - - -) are mutually independent but 
may have different distributions. This mode1 includes an M/G/l queueing model with delayed busy period 
as a specid case where Vk are i.i.d. for k 2 1. Transform results are obtained for the system idle probability 
at time t ,  the busy periodl and the number of customers at time t given that m customers have left the 
system at  time t since the cornmencement of the current busy period. The virtual waiting time at  time t 
is also analyzed. A special case that Vk are i.i.d. for k 2 2 is treated in detail, yielding simple and explicit 
sol~~tions. 

1 Introduction 
We consider a single server queueing system where customers arrive according to a 

Poisson process with intensity A and the service discipline is FIFO. In each busy period, 
the service time of the k-th arriving customers is denoted by Vk (k 2 0) where the 0-th 
customer initiates the busy period. It is assumed that Vk (k  2 0) are mutually independent 
but may have different distribution functions Vk(x) (k 2 0). 

There are many queueing situations to which such a model is immediately applicable. 
For example, consider a case that customers carry i.i.d. service times S with common dis- 
tribution function S(x) but its service time will be changed as amS, where am is a constant 
number depending on the number of customers who already left the system since the be- 
ginning of the current busy period. When 1 5 am 5 a m + ~  holds for m 2 0, the model may 
describe a system with gradual server fatigue. On the other hand, when 1 2 am 2 am+l, 
the model may represent a system with service enforcement as the busy period is prolonged. 
Queueing situations of this sort would naturally arise in analysis of c o ~ ~ u n i c a t i o n  pro- 
tocols in ATM(Asynchronous Transfer Mode) networks, where slots of time-frames would 
be allocated to voice and data packets dynadcally. If we focus on data transmission, the 
service rate for data packets would change as the corresponding slot allocation varies over a 
busy period. Specifications of am would enable one to analyze a variety of communication 
protocols. 

Another example may be a single server queueing system with i.i.d. service times S where 
the server takes a vacation whenever j customers are served without interruption, resulting 
in the expanded service completion time V + S for the (mj  + 1)-th customer (m = 1,2, + -1 
within a busy period. The model of this paper also includes an M/G/l queueing system 
with delayed busy period studied by Welch[2], where Vk are i.i.d. for li 2 1. 

The structure of the paper is as follows. In Section 2, the model is formally described 
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and necessary notation is introduced. Transform results are obtained in Section 3 for the 
system idle probability and the busy period, establishing a relationship between the two. 
Section 4 analyzes the time-dependent joint distribution of the number of customers in 
system and the number of customers that have already left the system during the current 
busy period. The remaining service time and the virtual waiting time are considered in 
Section 5 .  A special case that Vk are i.i.d. for k >: 2 is analyzed and simple and concrete 
results are derived. This is the topic of Section 6. 

Model Description 
Customers arrive at a single server queuing system according to a Poisson process with 

intensity A.  Let N(t )  be the number of customers present in system at time t ,  including the 
one in service, if any. Furthermore, let M(t)  be the number of customers served completely 
within the current busy period at time t. If the server is idle at time t,  M(t)  is defined to 
be 0. When M(t)  = m, the service time of a customer who is currently in service is Vm9 
with distribution function Vm(x),m = 0,1,2,- -. We assume that V d x )  has the density 
function Note that a customer whose arrival causes a new busy period is called the 
0-th customer of the busy period. We define 

and 

(2.3) 

Suppose that there are no customers in system at t = 0, that is M(0) = 0, N(0) = 0. 
The process {M(t), N(t)} is not Markov. Let X (t) be the cumulative service given to the 
customer currently in service if there is a customer in system at time t.  If the system is 
idle a t  time t ,  then X( t )  0. M(t) ,  N(t) ,  X( t )  are the states just after time t ,  and hence 
they are all continuous from the right side. It is obvious that {M(t), N(t) ,  X(t)} is a vector 
valued Markov process. Throughout the paper, we assume that M(0) = 0, N(0) = 0 and 
X(0) = 0. 

For t > 0, let 
(2.4) e(t) G P[M( t )  = 0, N(t)  = O,X(t) = 01, 

and 

Thus, e ( t )  denotes the probability that the system is idle at time t ,  and Fmn(m, t )  
= 1 - ~ ( t ) .  We assume that Fmvn (X,  t )  is absolutely continuous with respect to the first vari- 
able and write fm,n(x, t )  SAX, t). 

Considering the event [M (t + A)  = 0, N (t + A) = 0, X (t + A) = 01 preceded by the 
event [M(t)  = 0, Ni t )  = O,X(t) = 01 or [M(t) = m, N(t)  = l , X ( t )  = X], m = 0,1,2, - -, 
where A is positive and sufficiently small, one sees that 
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By dividing both sides of Equation (2.6) by A and letting A += 0, together with the initial 
condition e(0) = 1, we obtain 

Consider now the situation in which [ M ( t )  = m ,  N ( t )  = n , X ( t )  = 01, i.e., just before t  
a new service has been started. In this case if m  = 0  and n  = 1, then the system is idle 
at time t  - A, i.e., M ( t  - A) = 0, N ( t  - A) = 0 , X ( t  - A) = 0, and a customer arrives 
during the time interval [t - A,(]. For m  = 0 , n  2 2, P [ M ( t )  = 0, N ( t )  = n , X ( t )  = 01 = 0. 
And if m 2 1, n  >, 1  then the system is busy at time t - A, and the service of the ( m  - 1)- 
st customer in that busy period has completed during the time interval [t - A, t ] ,  i.e., 
M ( t  - A )  = M ( t )  - 1 , N ( t  - A) = N ( t )  + 1 , X ( t  - A) = X -A .  It follows that 

Proceeding to the limit A += 0, we obtain 

(2.11) fo ,n(O, t )  = 6t,nA&(t), n  = 1,2, . . .  , 
where 8iln 1 for n  = 1, 0  for n  # 1, 

Next we consider the situation [ M ( t )  = m ,  N ( t )  = n , X ( t )  = X ]  and X > 0. Since the 
same customer is in service at time t  - A, the number of customers who already left the 
system in the current busy period is not changed during [t - A, t ] ,  i.e., M{t - A) = M { t ) .  
But for n  = 2,3,4, - an arrival may have occurred during [t - A, t].  And for n  = 1  the 
only case [ M ( t  - A) = M ( t )  , N  ( t  - A) = l ,  X ( t  - A) = X - A] arises. Then we have 

and 

By proceeding to the limit A t  -+ 0, we obtain the following partial differential equations : 

a 9 
(2.15) 

~ f % l ( ~ ,  t ,  + z f m , l ( x 7  t )  = - { A  + v m ( x ) }  fm l l ( x ,  t ) ,  m  = o , l ,  2 , ,  . . . , 
and 
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Equations (2.7), (2.11), (2.12), (2.15) and (2.16) give us all information about the tran- 
sient behavior of the Markov Process {M(t),  N(t),  X(t)}. 

By considering the situation [M(t) = m, N(t)  = n9 X( t )  = X], X > 0, we see that 
only arrivals may have occurred and no customers leave the system during the time interval 
(t-x,x). Henceat timet-X wehavetheevents [M(t-X) = m,N(t-X)  = n-k,X(t -X)  = 
01, k = 0, l1 2 - , n - 1. Thus we obtain that, by conditioning on the state of this Markov 

rocess at time t - X, 

where for the case of m = 0, we recall the equations f o , n ( ~ ,  t )  = 0 for n = 2,3,4 - -. 
Substituting (2.17) into the right hand sides of (2.7) and (2.12) respectively, and using 

v ~ ( x )  = K ( x ) ~ ~ ( x ) ,  we obtain 

and 

For notational convenience, we introduce the following functions, transforms, and gen- 
erating functions. 

The next proposition plays an important role for studying the transient behavior of the 
Markov process [M(t), N(t) ,  X(t)]  to be discussed in the next section. 
Proposition 2.1 

00 

,. l + E fm,l (o , l>)~m (S + A )  
(2.27) &ls) = m=0 

s + A  
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Proof: By taking the Laplace transform of both sides of (2.18), one sees that 

providing the proposition. 
The next proposition also follows in a similar manner from (2.19) and (2.11), and will 

be used in Section 3. 
Proposition 2.2 

Of interest is a recurrence relation for ( 0 ,  S; W )  given in the theorem below. 
Theorem 2.3 

Proof: For X > 0 ,  from (2.17), one has 

00 n-l (hp- {E /m,n-k(o, t - ~ ) e - ' ~ -  
n=l  k=0 k! v m l x ) }  wn  

For X = O,m = 0 ,  from (2.11) , we obtain 

For X = O,m >: 1,  from (2.12) and (2.33), we see that 

Taking the Laplace transform of both sides of (2.34) and (2.35) respectively, the theorem 
follows. D 
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3 The System Idle Probability and The Busy Period 
In this section, we derive the transform results for the system idle probability and the 

busy period. A preliminary lemma is needed. Let ak correspond to the number of arrivals 
during the service time of the k-th customer (k  > 0) in a busy period. Suppose that there is 
no one waiting in the system when the m-th customer starts receiving the service. (Hence 
if am = 0, the current busy period is terminated.) Of interest of a combinatorial nature 
is a set of {ao, al, , am} which realizes the above situation. In order to construct this 
set, we introduce a set Umk of sequences of nonnegative integers of length k + 1 generated 
recursively on k in the following manner. 

[Step 01 Um,o = {{l}} 
[Step k ]  (k  = l, 2, - - - , m - l) 

The set of original interest is then obtained as Um,m-l. For clarity, the example of m = 3 
is given below. 

For notational convenience, we decompose the set Um,m-l by the value of ao. More 
specifically, {ao, al,  . am_l} G Smyn implies that a0 = n and {ao, al ,  am-l} E Um,m-l. 
Consequently, one has 

Using these sets Um,m-l, the next lemma follows. 
Lemma 3.1 

P*2) / m , l ( ~ , s )  = A?(s)ym(s + A ) ,  m = 0 7 1 , 2 7 . m . ,  

where 

f for m = 0, 

Proof: From (2.30), for m = 0 Equation (3.2) holds obviously. For m > 1, from (2.29), 
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m-l 

To complete the proof we note that Sm,nl nSm,n, = 0 when nl # n2.  Replacing Eum,m-l 

in the above equation by qa )'"-l J = O  â‚¬Srn, we obtain 

= A2(s)ym(s + A) for m = l ,  2,3, . EI 

Substituting (3.2) into the right hand side of (2.27), and solving for ? ( S ) ,  we obtain the 
next theorem. 
Theorem 3.2 

A 1 
(3.4) â ‚ ¬ (  = 00 

S + A  -AV ym(s + A)@m(s + A) 
m=O 

We now turn our attention to the busy period. The busy period analysis can be done 
along the line of derivation for the ordinary M / G / 1  system. Let TBP be the busy period, 
formally defined as 

We assume that it has the density function denoted by 

(3.6) ~ p ( t )  z P[t 5 Tap < t + d t  1 M ( 0 )  = O,N(O) = 1 , X ( 0 )  = O ] ,  

with the Laplace transform 

As for the ordinary M / G / l  system, the following relationship between S B p ( s )  and e{s)  
holds. 
Theorem 3.3 

(3.8) 
A 

& ( S )  = { S  + A - A 3 B p ( ~ ) } - 1  

Proof: We first note that 
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The first term of the right hand side of this equation describes the case that no arrivals 
occurred during [Q, A]. The second term represents the case that an arrival occurs during 
[O, A] and the busy period initiated by this arrival continues until time t + A - y and no 
arrivals occur during [t + A - y, t + A]. Letting A Ã‘ 0,  Equation (3.9) leads to the following 
differential equation : 

By taking the Laplace transform with e(0)  = 1, we obtain 

Solving for 2 ( s )  completes the proof. 0 

From Theorem 3.2 and Theorem 3.3, we obtain the next corollary immediately. 
Corollary 3.4 

00 

(3.12) ~ B P ( S )  = y" 7771 ( S  + A)Gm ( 3  + A )  
m=0 

In (3.12), the right hand side is formed by conditioning on m, the number of customers 
who arrive during a busy period, i.e., including a customer who arrives to an empty queue 
and starts this busy period, the busy period ends after having m+ 1 customers served. Hence 
7 m ( s  + ̂ )vm(s + A )  is the Laplace transform of the busy period distribution conditioned on 
m. To interpret (3.12), we recall the definition of ? ^ ( S )  in (3.3). From (2.23) and (2.24), 
one has 
(3.13) 7o(s + A )  = l ,  

and 

771-1 
( A t ) a k  - E f e-(s+')t- vk( t )d t ,  m = l , 2 , 3 , - - - .  

n=l m-l ak! {adisO 6Sm.n 

Suppose that a0 = n customers arrive during the service time of the 0-th customer in this 
busy period. For {ao = n, a ~ ,  , am-1} E SmTn, ak customers arrive during the service 

( A t l a k  
time of the k-th customer ( l  5 k 5 m - l )  with probability 1 e-At- vk( t )d t .  The 

a&! m 

probalistic meaning of (3.14) is then clear. 
We are now in a position to find the limit of the system idle probability e ( t )  as t Â¥Ã CO, 

and the mean busy period E[TBp] f^Â toBp( t )d t .  
Theorem 3.5 

1 

lim ~ ( t )  = 
1 

t-00 1 + AE[TBP] 
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Proof: Using Theorem 3.3 and the L'H6pita17s rule, one has 

s 
lim e ( t )  = lim sÂ£(s = lim 

810 sio s + A - AoBp(s) 

= lim 
1 - 1 

10  l - A(&-(,)) l + AE[Tgp] ' 

The second statement is immediate from Corollary 3.4 and the relation 
a E[TBP] = - lims10 J - ~ ~ ( s ) - D  

4 Time-Dependent Joint Distribution P [ M ( t )  = m, N ( t )  = n] 
In this section we analyze the time-dependent joint distribution 

The corresponding generating functions and their Laplace transforms are denoted by 

and 
(4.4) 

We have already determined 2(s)  in Theorem 3.2. In the next theorem, % ^ ( S ;  W )  is 
obtained using 2(s) .  
Theorem 4.1 

m-1 $.(S + A - Aw) 
- E 7k(s + A)Bt(s + A )  

k=O i=k+l W 

1 - V m { s + A - h )  
X , for m = 1,2,3, 

s + A - A w  
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Proof: For m >_ 1, from (2.33), it can be seen that 

Similarly for m = 0 ,  we obtain 

and 

(4.8) 

Using the recurrence relation (2.32) and (3.2),  for m > 1, one has 

From (2.34), for m 0 ,  it follows that 

m-1 Gi(s + A - Aw) 
- y ~ k ( s  + A)Vk(i + A) ,... 

where the empty sum Go is defined as 0 and the empty product is defined as 1. 
Substituting (4.9) into (4.7) and (4.8),  the proof of this theorem is complete. CI 

5 Remaining Service Time and Virtual Waiting Time 
Now we analyze the time-dependent behavior of the joint process of M ( t ) ?  N ( t )  and the 

remaining service time X + ( t ) .  For m >_ 0 we define 

and 
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Theorem 5.1 

for m = 0 , 1 , 2 , - - -  

P O  Substituting h n ( v  t) = Lt fm,n(y, t) v ( + ) v) dy into (5.3), and using (2.25) and 
m Y 

(2.33), one has 

Substituting (4.9) intotheaboveequation, thetheoremfollows. CI 

Next we consider the virtual waiting time or the unfinished work W(t) at time t. The 
joint distribution function Wm(x, t )  of W(t) and M(t) for m > 0, and its LST are defined 
by 

(5.6) W^{x,t) P[W(t)  < x,M{t) = m], X >0, 

From the initial condition N(0) = 0, we have W(0) = 0. Moreover, we note that 

Wm(0.t) = { e(t) = P[N( t )  = 01, for rn = 0, 
0 , for m > 1. 

We recall that R ( y )  = vm(z)dz and = 1 if m = 0 and SmT0 = 0 otherwise. 
Theorem 5.2 

Proof: Conditioning on X(t)  = y, we see that 

m+n-1 
Wm(x,t) = &(t)Sm,o + Vm - Y + I; Vt 5 X \Vm ^y fm,,(y, t)dy. 

k=m+l l 
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It then follows that 

By taking the Laplace transform of (5.10), with mutual independence of V ,̂ the theorem 
follows. D 

6 Special Cases 
When Vk(k 2 0) are i.i.d., our model reduces to the ordinary M/G/ l  system, which we 

call Case A. If Vk(k > 1) are i.i.d., then the model coincides with the delayed busy period for 
M/G/ l ,  originally studied by Welch[2]. This case is called Case B. In this section, we extend 
Case B by assuming that Vk(k > 2) are i.i.d., which we call Case C. The busy period and 
its transform for Case X are denoted by TBpx and SBpx (S) respectively for X = A, B, C. 
The primary purpose of this section is to express GpC(s)  in terms of SBp^{s) and ffBpĝ s}. 

For notational convenience, we denote the concatenation of two sequences of integers 
a = {ao , a l , - - . , a i }  and 6 = { b o , b l , - - - , b j )  by 

We also denote the truncation of a with the first term dropped by a*, i.e., 

The notation is extended in a natural way to similar set operations where 

A(+)B = {a(+)b 1 a G A, 6 G B}, 

and 
A* {a* 1 a E A]. 

For the definition of Sm,n given in (3.1), we see that {O} is the set of sequences ( of 
length m + 1 ) of customer arrivals in individual service times when the busy period ends 
after having m + 1 customers served and n customers arrive during the service time of the 
0-t h customer. Accordingly, 

00 

is the set of such sequences for all busy periods having n customer arrivals during the service 
time of the 0-th customer. We note that Smo = 0 so that 

(6.2) s o  = {o} 
With this interpretation, it is clear that Sn can be decomposed 

We are now in a position to prove the following theorem. 
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Theorem 6.1 

Proof: Let [a] denote the largest subscript of the sequence a i.e., when a = {ao, a1 , - - , am} 
[a] = m. Changing the order of the summations in (3.14) and using (6.3), we can write 

00 CO m 

(6.5) f f ~ p ~ ( s )  = E 7rn(s + A ) U s  + A )  = GO,O(S + A)  + E E 11 Gk,ak(s + A )  
m=0 n=l aâ‚¬ k=O 

Since ijk,ak(s + A) = ffak(s + A )  for k 2 2, we obtain 

Setting G,,,(s + A )  =;. ( S  + A)  in (6.5), we notice that 

In the same manner, 

00 

Substituting (6.7) and (6.8) into (6.6), we then obtain 

The next corollary is immediate as special cases of Theorem 6.1. 
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Corollary 6.2 

For the mean busy period in each case, we have the next corollary. 
Corollary 6.3 

Proof: Finding the derivative of both sides of (6.4) with respect to S ,  and proceeding to 
the limit s 1 0 yield, 

(6.14) E[TBPc] = ( E [ T ~ ~ A ]  - E [ T ~ ~ B ] )  (GO(A) - 1) + E[&] ( 1  + A-E[TBP,]) 

For E [ T a p A ]  and E[TBPB], as special cases of (6.14), we have 

These yield the first two assertions in this corollary. Substituting (6.1 l ) ,  (6.12) into (6.14) 
yields (6.13). 0 

Now we observe the limiting behavior of the system idle probability and the generating 
function of the distribution of the queue size in Case C as time t Ã‘ m. 

Theorem 6.4 
1 - A E [ V ]  

lim e ( t )  = 
t-km 1 + A { E [ % ]  - qv1 + ( l  - Go(A))(E[%] - E [ V ] ) } '  

CO 

(6.18) lim P [ N ( t )  = n 1 N ( 0 )  = O]wn 
t+CO n=O 

- - 1 - X E [ V ]  

1 + A {E[W - E[VI  + ( 1  - Go(\)}(E[V,} - E [ V l ) }  
(wV0(A - h) - G(\ - Aw))  

{ (W - ? ( A  - Aw))  

G 1 ( A  - \W) - G(\ - Aw))(Go(\ - \W) - Go(\) + wGo(A)) + ( 1  - w ) ( w  - $ ( A  - Aw))  

Proof: From Theorem 3.5 and (6.13),  one has 

(6.19) lim e ( t )  = limsÂ£(s 
t+m 10 

- 
1 

1 + AE[TBP~] 
1 - A E [ V ]  

1 + A { E [ & ]  - E [ V ]  + ( 1  - Go(A))(E[V11 - Â £ [ V ] )  
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From Theorem 4.1, after some algebra, it follows that 

(6.20) lim ^P[N(~) = n \ N(0) = O]wn = lim V rm(i!; W )  = lims )rm(s; W) 
t-00 t-4-00 

n=o m=0 'l0 m=o 

(wBo(A - Aw) - B(A - Aw)) 
= ( S ) )  { (W - V(\ - Aw)) 

Substituting (6.19) into (6.20), we obtain the generating function of the distribution of 
queue size as t -+ m. U 

Remark 6.5 We note that we obtain the same results as Welch's model( Case B )  in [2] by 
setting Bds) = B(s)  and V\ = V in theorem 6.4. Moreover, if we setvo(s) = Bi(s) = $(S) and 
V. = V\ = V in theorem 6.4, the results of the ordinary M/G/ l  (Case A) are immediately 
derived. 
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