A NOTE ON A THEOREM OF CONTINUUM OF ZERO POINTS

Bao-Lin Guo Yoshitsugu Yamamoto
University of Tsukuba

(Received April 16, 1997; Final March 13, 1998)

Abstract By developing an algorithm, Herings, Talman and Yang [6] recently proved the following interesting and deep theorem: A correspondence ζ from the n-dimensional unit cube U^{n} to the n-dimensional Euclidean space R^{n} has a continuum of zero points containing the origin and the vector of all-ones if the correspondence satisfies certain conditions. In this note we give an alternative proof of the theorem in the case where the correspondence $\zeta: U^{n} \rightarrow R^{n}$ is single-valued.

1. Introduction

Since the appearance of the celebrated Brouwer's fixed point theorem, various fixed point theorems have been established. However, most of them only guarantee the existence of a single fixed point, and, as far as we are aware of, there are few existence results for multiple fixed points. Herings, Talman and Yang [6] recently demonstrated, by developing a simplicial algorithm, the following theorem (Theorem 4.3 of [6]) in a constructive manner: there exists a connected set of zero-points of a correspondence $\zeta: U^{n} \rightarrow R^{n}$ containing the origin and the vector of all-ones if the correspondence satisfies some suitable conditions, where R^{n} is the n-dimensional Euclidean space and U^{n} is the unit cube of R^{n}, i.e., $U^{n}:=\left\{x \mid x \in R^{n} ; 0 \leq x_{i} \leq 1\right.$ for all $\left.i=1,2, \ldots, n\right\}$. This theorem is interesting and deep, because it implies Brouwer's fixed point theorem as a special case. For the above theorem, Herings and Talman [5] provided an alternative existence proof. In this note we present a new and intuitively understandable proof of this theorem based on a theorem of Browder [1]. Our framework also gives a natural path-following interpretation of the algorithm of Herings, Talman and Yang [6], which is based on the three decades of significant development of fixed point computation, e.g., Scarf [9], Eaves [3], van der Laan and Talman [8], and Kojima and Yamamoto [7].

This paper is organized as follows. In Section 2, we give some preliminaries. In Section 3, we present the main result. In Section 4, we give an example as a geometric interpretation of the theorem.

2. Preliminaries

We denote the set of all real numbers by R, the set of integers $\{1,2, \ldots, n\}$ by I_{n}. For any $x, y \in R^{n}, x \geq y$ means $x_{i} \geq y_{i}$ for $i \in I_{n}, x>y$ means $x \geq y$ with some $j \in I_{n}$ such that $x_{j}>y_{j}$, and $x \gg y$ means $x_{i}>y_{i}$ for $i \in I_{n}$. We write $\mathbf{0}:=(0,0, \ldots, 0)^{\top}, \mathbf{e}:=(1,1, \ldots, 1)^{\top}$ and $\mathrm{e}^{i}:=(0, \ldots, 0, \stackrel{i}{1}, 0, \ldots, 0)^{\top}$ for $i \in I_{n}$ and $R_{++}^{n}:=\left\{x \mid x \in R^{n} ; x \gg \mathbf{0}\right\}$. For a subset A of $R^{n}, \partial A$ denotes the boundary of A in R^{n}. A function $P: R^{n} \rightarrow U^{n}$ is said to be the
orthogonal projection from R^{n} onto U^{n} if

$$
\begin{equation*}
P(x):=\operatorname{argmin}\left\{\|x-y\| \mid y \in U^{n}\right\}, \tag{2.1}
\end{equation*}
$$

where $\|\cdot\|$ denotes the Euclidean norm. For a subset X of R^{n} and a function $h: X \times[0,1] \rightarrow$ X, we define a subset C_{h} of $X \times[0,1]$ as follows.

$$
\begin{equation*}
C_{h}:=\{(x, t) \mid(x, t) \in X \times[0,1] ; x=h(x, t)\} \tag{2.2}
\end{equation*}
$$

Let $f: U^{n} \rightarrow R^{n}$ be a continuous function and let X be an open convex subset of R^{n} containing U^{n}. We define a function $\theta: X \rightarrow R^{n}$ by

$$
\begin{equation*}
\theta(x):=P(x)+f(P(x)) \tag{2.3}
\end{equation*}
$$

Since the orthogonal projection P is a retraction onto U^{n}, θ is continuous on X and also $\theta(x)=x+f(x)$ for $x \in U^{n}$.

For each $t \in[0,1]$, we define the subset $\Omega(t)$ of U^{n} and a retraction $r_{t}: R^{n} \rightarrow \Omega(t)$ as follows.

$$
\begin{align*}
\Omega(t) & :=\left\{x \mid x \in U^{n} ; \sum_{i=1}^{n} x_{i}=n t\right\} \tag{2.4}\\
r_{t}(x) & :=\operatorname{argmin}\{\|x-y\| \mid y \in \Omega(t)\} . \tag{2.5}
\end{align*}
$$

The topological space Y is said to be connected if it is not the union of two or more nonempty disjoint closed sets. A subset of Y is called connected if it is connected as a subspace of Y. It is well known that the connectedness is a topologically invariant property. In particular, the continuous image of a connected set remains connected. For a subset Z of R^{n} and a point $x \in Z$, the connected component of x in Z is the union of all connected subsets of Z containing x. A subset of Z is simply called a connected component of Z if it is a connected component of some point in Z.

3. Main Result

To prove the main theorem we require the following theorem, which is a special case of Theorem 2 in Browder [1].
Theorem 1 Let X be an open convex subset of R^{n} and let $h: X \times[0,1] \rightarrow X$ be a continuous function. Suppose there exists a compact subset K of X such that $h(X \times[0,1]) \subset K$. Then there exists a connected component D of C_{h} defined by (2.2) such that both of $D \cap(X \times\{0\})$ and $D \cap(X \times\{1\})$ are nonempty.

In this theorem, $X \times\{t\}$ is homeomorphic to X for each fixed $t \in[0,1]$. Then the function $h(\cdot, t)$ has a fixed point in X for each $t \in[0,1]$ by Brouwer's fixed point theorem. We here introduce two lemmas necessary to prove the main theorem.
Lemma 2 For the retraction $r_{t}: R^{n} \rightarrow \Omega(t)$ of (2.5), it holds that $\left\|r_{t}(x)-r_{t}\left(x^{\prime}\right)\right\| \leq\left\|x-x^{\prime}\right\|$ for $x, x^{\prime} \in R^{n}$.
The proof is straightforward and will be omitted. The following is Corollary 8.1 of Hogan [4]. Let $2^{R^{n}}$ denote the power set of R^{n}.
Lemma 3 Let $F: R \rightarrow 2^{R^{n}}$ be a point-to-set map and let $g: R \times R^{n} \rightarrow R$ be a real-valued function. Let the point-to-set map $k: R \rightarrow 2^{R^{n}}$ be defined as

$$
\begin{equation*}
k(t):=\operatorname{argmin}\{g(t, y) \mid y \in F(t)\} . \tag{3.1}
\end{equation*}
$$

Suppose F is continuous at \bar{t} in the sense of point-to-set map, g is continuous on $\{\bar{t}\} \times F(\bar{t})$, k is nonempty and uniformly compact near \bar{t}, and $k(\bar{t})$ is a singleton. Then k is continuous at \bar{t}.

Lemma 2 and Lemma 3 yield the following theorem.
Theorem 4 Let X be an open convex subset of R^{n} containing U^{n} and let $f: U^{n} \rightarrow R^{n}$ be a continuous function. Let the orthogonal projection $P: R^{n} \rightarrow U^{n}$, the function $\theta: X \rightarrow R^{n}$, the set $\Omega(t)$ and the retraction r_{t} be defined by (2.1), (2.3), (2.4) and (2.5), respectively. Then the function $h: X \times[0,1] \rightarrow U^{n}$ defined by

$$
\begin{equation*}
h(x, t):=r_{t}(\theta(x)) \tag{3.2}
\end{equation*}
$$

is continuous on $X \times[0,1]$.
Proof: First we show the continuity of h with respect to t. For a fixed $x \in X$, let F : $[0,1] \rightarrow 2^{U^{n}}$ and $g:[0,1] \times U^{n} \rightarrow R$ be defined by

$$
F(t):=\Omega(t) \text { and } g(t, y):=\|\theta(x)-y\|^{2} .
$$

Also let $k:[0,1] \rightarrow 2^{U^{n}}$ be defined by (3.1) for these F and g. Since $F(t)$ is a compact convex set and $g(t, y)$ is a strictly convex function in $y, k(t)$ is a singleton. The other conditions of Lemma 3 can be easily checked, and since $h(x, t)=k(t), h$ is continuous with respect to t.

Next we show the continuity of h with respect to $(x, t) \in X \times[0,1]$. Let $\varepsilon>0$ be given. By the continuity of θ on X, there exists $\delta_{1}>0$ such that for $x^{\prime} \in X$

$$
\begin{equation*}
\left\|\theta\left(x^{\prime}\right)-\theta(x)\right\|<\varepsilon / 2 \text { if }\left\|x^{\prime}-x\right\|<\delta_{1} \tag{3.3}
\end{equation*}
$$

Using the continuity of h in t, we can choose $\delta_{2}>0$ such that for $t^{\prime} \in[0,1]$

$$
\begin{equation*}
\left\|h\left(x, t^{\prime}\right)-h(x, t)\right\|<\varepsilon / 2 \text { if }\left|t^{\prime}-t\right|<\delta_{2} . \tag{3.4}
\end{equation*}
$$

Put $\delta:=\min \left\{\delta_{1}, \delta_{2}\right\}$. For any $\left(x^{\prime}, t^{\prime}\right) \in X \times[0,1]$ with $\left\|x^{\prime}-x\right\|<\delta$ and $\left|t^{\prime}-t\right|<\delta$, using (3.3), (3.4) and Lemma 2, we see

$$
\begin{aligned}
\left\|h\left(x^{\prime}, t^{\prime}\right)-h(x, t)\right\| & \leq\left\|h\left(x^{\prime}, t^{\prime}\right)-h\left(x, t^{\prime}\right)\right\|+\left\|h\left(x, t^{\prime}\right)-h(x, t)\right\| \\
& \left.\left.<\| r_{t^{\prime}} \theta\left(x^{\prime}\right)\right)-r_{t^{\prime}} \theta(x)\right) \|+\varepsilon / 2 \\
& \leq\left\|\theta\left(x^{\prime}\right)-\theta(x)\right\|+\varepsilon / 2<\varepsilon .
\end{aligned}
$$

Therefore h is continuous at (x, t).
Now we introduce the assumption of f in [6], which plays the crucial role for the existence of a continuum of zero points.
Assumption 5 The function $f: U^{n} \rightarrow R^{n}$ satisfies
(a) f is continuous,
(b) for any $x \in \partial U^{n}$,

$$
f_{i}(x)\left\{\begin{array}{lll}
\geq 0 & \text { if } & x_{i}=0 \\
\leq 0 & \text { if } & x_{i}=1,
\end{array}\right.
$$

(c) for each $x \in U^{n}$, there is $p(x) \in R_{++}^{n}$ such that $p(x)^{\top} f(x)=0$.

By Z_{f} we denote the set of zero points of f, i.e.,

$$
Z_{f}:=\left\{x \mid x \in U^{n} ; f(x)=\mathbf{0}\right\} .
$$

Remark: According to Assumption 5 (c), either $f(x) \geq \mathbf{0}$ or $f(x) \leq \mathbf{0}$ implies $x \in Z_{f}$.
Now we are ready to prove the existence theorem Theorem 4.3 of Herings, Talman and Yang [6]. It should be noted that their theorem is more general and holds for point-to-set maps.

Theorem 6 Let $f: U^{n} \rightarrow R^{n}$ be a function satisfying Assumption 5. Then the set Z_{f} contains a connected component containing $\mathbf{0}$ and \mathbf{e}.

To prove the theorem, we first prove the following lemma.
Lemma 7 Let $f: U^{n} \rightarrow R^{n}$ be the function satisfying Assumption 5 and let $h: X \times[0,1] \rightarrow$ U^{n} be defined by (3.2). Then for $(x, t) \in X \times[0,1],(x, t) \in C_{h}$ if and only if $x \in Z_{f} \cap \Omega(t)$. Proof: To prove the "only if" part let (x, t) be a point in C_{h}. Then we see

$$
x=h(x, t)=r_{t}(\theta(x)) \in \Omega(t)
$$

Then $P(x)=x$ and $x=r_{t}(x+f(x))$. Now we only need to show that $x \in Z_{f}$. We define \tilde{f}, h and g_{i} for $i \in I_{2 n}$ as follows:

$$
\begin{aligned}
\tilde{f}(y) & :=\frac{1}{2}\|y-(x+f(x))\|^{2}, h(y):=\sum_{j=1}^{n} y_{j}-n t \\
g_{i}(y) & := \begin{cases}-y_{i} & \text { if } i \in I_{n} \\
y_{i-n}-1 & \text { if } i \in I_{2 n} \backslash I_{n}\end{cases}
\end{aligned}
$$

and consider the minimization problem:

$$
\left\lvert\, \begin{array}{ll}
\operatorname{minimize} & \tilde{f}(y) \\
\text { subject to } & y \in X ; h(y)=0 ; g_{i}(y) \leq 0 \text { for } i \in I_{2 n}
\end{array}\right.
$$

Note that the feasible region of this problem is exactly $\Omega(t)$. Let $J:=\left\{i \mid i \in I_{2 n} ; g_{i}(y)=0\right\}$, which is the union of $J_{0}:=\left\{i \mid i \in I_{n} ; y_{i}=0\right\}$ and $J_{1}:=\left\{i \mid i \in I_{n} ; y_{i}=1\right\}$. Due to the linearity of constraints, it is readily seen that the problem satisfies a suitable constraint qualification, e.g., Abadie's constraint qualification. Therefore we obtain the necessary condition at a solution x that

$$
f(x)=\lambda_{0} \mathbf{e}+\sum_{i \in J_{0}} \lambda_{i}\left(-\mathbf{e}^{i}\right)+\sum_{i \in J_{1}} \lambda_{i} \mathbf{e}^{i}
$$

for some $\lambda_{0} \in R$ and $\lambda_{i} \geq 0$ for $i \in J$. If $x \notin \partial U^{n}$, then $J_{0} \cup J_{1}=\emptyset$ and this condition reduces to $f(x)=\lambda_{0}$ e. According to Assumption 5 (c), we obtain $\lambda_{0}=0$, and hence $x \in Z_{f}$.

We then assume $x \in \partial U^{n}$ and consider the following three cases.
Case1: $J_{0} \neq \emptyset$ and $J_{1} \neq \emptyset$.
By Assumption 5 (b), for any $i \in J_{0}$ and $i^{\prime} \in J_{1}$, we have

$$
\lambda_{0}-\lambda_{i} \geq 0 \text { and } \lambda_{0}+\lambda_{i^{\prime}} \leq 0
$$

so that $\lambda_{0}=0$. Then $\lambda_{i}=0$ and $\lambda_{i^{\prime}}=0$, and hence $x \in Z_{f}$.
Case 2: $J_{0} \neq \emptyset$ but $J_{1}=\emptyset$
By Assumption 5 (b), we have $\lambda_{0}-\lambda_{i} \geq 0$ for $i \in J_{0}$. Then $\lambda_{0} \geq 0$ and

$$
f(x)=\lambda_{0} \mathbf{e}+\sum_{i \in J_{0}} \lambda_{i}\left(-\mathbf{e}^{i}\right) \geq \mathbf{0}
$$

Applying Remark, we obtain $x \in Z_{f}$.
Case 3: $J_{0}=\emptyset$ but $J_{1} \neq \emptyset$
By Assumption 5 (b), we have $\lambda_{0}+\lambda_{i} \leq 0$ for $i \in J_{1}$. Then $\lambda_{0} \leq 0$ and

$$
f(x)=\lambda_{0} \mathbf{e}+\sum_{i \in J_{1}} \lambda_{i} \mathbf{e}^{i} \leq \mathbf{0} .
$$

Again applying Remark, we obtain $x \in Z_{f}$.
Next we prove the "if" part. Suppose $x \in Z_{f} \cap \Omega(t)$, then $P(x)=x$ and $f(x)=\mathbf{0}$. Thus

$$
\theta(x)=P(x)+f(P(x))=x
$$

and

$$
h(x, t)=r_{t}(\theta(x))=r_{t}(x)=x,
$$

because $x \in \Omega(t)$. Therefore $(x, t) \in C_{h}$ and the proof is completed.
Now we give the proof of Theorem 6 .

Proof of Theorem 6

Note that the function $h: X \times[0,1] \rightarrow U^{n}$ of (3.2) is continuous by Theorem 4. According to Theorem 1 there exists a connected subset D of C_{h} such that both $D \cap\left(U^{n} \times\{0\}\right)$ and $D \cap\left(U^{n} \times\{1\}\right)$ are nonvacant. Suppose $(x, 0),\left(x^{\prime}, 1\right) \in D$, then we have

$$
x=h(x, 0)=r_{0}(\theta(x))=\mathbf{0}
$$

and

$$
x^{\prime}=h\left(x^{\prime}, 1\right)=r_{1}\left(\theta\left(x^{\prime}\right)\right)=\mathbf{e} .
$$

Then $(0,0),(\mathrm{e}, 1) \in D$. Let $P_{x}: X \times[0,1] \rightarrow X$ be the projection onto the first coordinate. Since P_{x} is continuous and D is a connected subset of C_{h}, we obtain a connected set $P_{x}(D) \subset$ Z_{f} which contains two points

$$
\mathbf{0}=P_{x}((\mathbf{0}, 0)) \text { and } \mathbf{e}=P_{x}((\mathbf{e}, 1))
$$

Now the proof is completed.

4. Example

In this section, we give an illustrative example as a geometric interpretation of Theorem 6. Let $f: U^{2} \rightarrow R^{2}$ be defined by

$$
f(x):=\left(\left(x_{2}^{\mu}-x_{1}^{\nu}\right)\left(1+x_{1}\right),\left(x_{1}^{\nu}-x_{2}^{\mu}\right)\left(1+x_{2}\right)\right)^{\top}
$$

where μ and ν are natural numbers. For each μ and ν, the continuity of f is clear. We easily see that

$$
f_{1}\left(0, x_{2}\right)=x_{2}^{\mu} \geq 0 ; f_{2}\left(x_{1}, 0\right)=x_{1}^{\mu} \geq 0
$$

and

$$
f_{1}\left(1, x_{2}\right)=2\left(x_{2}^{\mu}-1\right) \leq 0 ; f_{2}\left(x_{1}, 1\right)=2\left(x_{1}^{\nu}-1\right) \leq 0 .
$$

Next, for each $x \in U^{2}$ let $p(x)=\left(1+x_{2}, 1+x_{1}\right)^{\top} \in R_{++}^{2}$, then $p(x)^{\top} f(x)=0$. Hence Assumption 5 (a), (b) and (c) are satisfied. It is clear to see that Z_{f} contains a connected component

$$
S:=\left\{\left.\left(t, t^{\frac{\nu}{\mu}}\right)^{\top} \right\rvert\, t \in[0,1]\right\}
$$

connecting $\mathbf{0}$ and \mathbf{e}. The component S of this example can have the following three different shapes depending on the values of μ and ν :
(i) If $\mu=\nu, S=\{(t, t) \mid t \in[0,1]\}$, which is the diagonal set of U^{2}.
(ii) If $\mu>\nu, S$ is an arc linking two corners above the diagonal set.
(iii) If $\mu<\nu, S$ is an arc linking two corners below the diagonal set.

Acknowledgment

The second author is partly supported by Grant-in-Aid for Scientific Research of the Ministry of Education, Science and Culture, Grand No. 10680419.

References

[1] F.E. Browder: On continuity of fixed points under deformations of continuous mappings. Summa Brasiliensis Mathematicae, 4 (1960) 183-191.
[2] J. Dugundji: Topology (Allyn and Bacon, Boston, 1996).
[3] B.C. Eaves: Homotopies for computation of fixed points. Math. Programming, 3 (1972) 225-237.
[4] W.W. Hogan: Point-to-set maps in mathematical programming. SIAM Review, 15 (1973) 591-603.
[5] J.J. Herings and A.J.J. Talman: Intersection theorem with a continuum of intersection. CentER Discussion Paper No. 9479, Tilburg University, Tilburg, The Netherlands, 1994.
[6] J.J. Herings, A.J.J. Talman and Z. Yang: The computation of a continuum of constrained equilibria. Math. of Operations Research, 21 (1996) 675-696.
[7] M. Kojima and Y. Yamamoto: Variable dimension algorithms: basic theory, interpretation and extensions of some existing methods: Math. Programming, 24 (1982) 177-215.
[8] G. van der Laan and A.J.J. Talman: A restart algorithm for computing fixed points without an extra dimension. Math. Programming, 17 (1979) 74-84.
[9] H. Scarf: The approximation of fixed points of a continuous mapping. SIAM J. Appl. Math., 15 (1967) 1328-1343.

Yoshitsugu Yamamoto
Institute of Policy and Planning Sciences
University of Tsukuba
Tsukuba, Ibaraki 305-8573, Japan
e-mail:yamamoto@shako.sk.tsukuba.ac.jp

