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Abstract By developing an algorithm, Herings, Talman and Yang [6] recently proved the following 
interesting and deep theorem: A correspondence from the n-dimensional unit cube U" to the n-dimensional 
Euclidean space R" has a continuum of zero points containing the origin and the vector of all-ones if the 
correspondence satisfies certain conditions. In this note we give an alternative proof of the  theorem in the 
case where the correspondence C : U"' -+ R" is single-valued. 

1, Introduction 
Since the appearance of the celebrated Brouwer's fixed point theorem, various fixed point 
theorems have been established. However, most of them only guarantee the existence of 
a single fixed point, and, as far as we are aware of, there are few existence results for 
multiple fixed points. Herings, Talman and Yang [6] recently demonstrated, by develop- 
ing a simplicial algorithm, the following theorem (Theorem 4.3 of [6]) in a constructive 
manner: there exists a connected set of zero-points of a correspondence ( : Un -+ Rn con- 
taining the origin and the vector of all-ones if the correspondence satisfies some suitable 
conditions, where R"' is the n-dimensional Euclidean space and Un is the unit cube of Rn, 
i.e., U"' := { x 1 X C Rn; 0 < xi < 1 for all i = 1,2, .  . . , n }. This theorem is interesting and 
deep, because it implies Brouwer's fixed point theorem as a special case. For the above 
theorem, Herings and Talman [5] provided an alternative existence proof. In this note we 
present a new and intuitively understandable proof of this theorem based on a theorem 
of Browder [l]. Our framework also gives a natural path-following interpretation of the 
algorithm of Herings, Talman and Yang [6], which is based on the three decades of signif- 
icant development of fixed point computation, e.g., Scarf [g], Eaves [3], van der Laan and 
Talman [8], and Kojima and Yamamoto [7]. 

This paper is organized as follows. In Section 2, we give some preliminaries. In Section 
3, we present the main result. I11 Section 4, we give an example as a geometric interpretation 
of the theorem. 

2. Preliminaries 
We denote the set of all real numbers by R, the set of integers {l, 2, . . . , n} by In. For any 
X, y C R", X > y means X; > y; for i E In, X > y means X > y with some J' C In such that 
xj > yj ,  and X y means xi > yi for i E In. We write 0 := (0,0,. . .  ,0)"', e := (1,1,. . . , l ) T  

and ei := (0,. . . ,0 ,1 ,0 , ,  . . ,0)"' for i In and R", := { X  1 X C R"; X 0 1 .  For a subset 
A of Rn, QA denotes the boundary of A in R". A function P : Rn -+ Un is said to be the 

© 1998 The Operations Research Society of Japan



Con tin uum of Zero Points 

orthogonal projection from R" onto U" if 

where [ l  11 denotes the Euclidean norm. For a subset X of R" and a function h : X X [O, l] --+ 
X, we define a subset Ch of X X [O, l] as follows. 

Let f : Un -+ R" be a continuous function and let X be an open convex subset of Rn 
containing U". We define a function 0 : X -+ R" by 

Since the orthogonal projection P is a retraction onto Un, 6 is continuous on X and also 
0 ( x )  = X + / ( X )  for X G U". 

For each t E [O, l], we define the subset W t )  of U" and a retraction rt : R" -+ a(t) as 
follows. 

The topological space Y is said to be connected if it is not the union of two or more 
nonempty disjoint closed sets. A subset of Y is called connected if it is connected as a 
subspace of Y. It is well known that the connectedness is a topologically invariant property. 
In particular, the continuous image of a connected set remains connected. For a subset Z 
of R" and a point X E Z, the connected component of X in Z is the union of all connected 
subsets of Z containing x. A subset of Z is simply called a connected component of Z if it 
is a connected component of some point in Z. 

3. Main Result 
To prove the main theorem we require the following theorem, which is a special case of 
Theorem 2 in Browder [l]. 
Theorem 1 Let X be an open convex subset of R" and let h : X X [O, l ]  -+ X be a continuous 
function. Suppose there exists a compact subset K of X such that h ( X  X [O, l ] )  C K. Then 
there exists a connected component D of Ch defined b y  (2.2) such that both of D n ( X  X {O}) 
and D fl ( X  X {l}) are nonempty. 

In this theorem, X X { t }  is l~on~eomorpl~ic to X for each fixed t G [O, l]. Then the 
function h ( - ,  t )  has a fixed point in X for each t E [O, l] by Brouwer's fixed point theorem. 
We here introduce two lemmas necessary to prove the main theorem. 
Lemma 2 For the retraction rt : R" -+ H(t) of (2.5)) it holds that \\rt(x)-rt(x'}\\ < \\X-xf\1 
for x ,x l  G R", 
The proof is straightforward and will be omitted. The following is Corollary 8.1 of Hogan [4]. 
Let denote the power set of R". 
Lemma 3 Let F : R -+ 2Rn be a point-to-set map and let g : R X R" -+ R be a real-valued 
function. Let the point-to-set map k : R Ã‘ 2^" be defined as 

Suppose F is continuous at f in the sense of point-to-set map, g is continuous on {t} X F(t) ,  
k is nonempty and uniformly compact near and kit} is a singleton. Then k is continuous 
at 5. 
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Lemma 2 and Lemma 3 yield the following theorem. 
Theorem 4 Let X be an open convex subset of Rn containing Un and let f : Un Ã‘ -Rn be a 
continuous function. Let the orthogonal projection P : -Rn -+ U""', the function 0 : X -+ Rn, 
the set n(t} and the retraction rt be defined b y  (S . I ) ,  (2.3), (2.4) and (2.5), respectively. 
Then the function h : X X [O, l] -+ U"' defined b y  

is continuous on X X [O, l]. 
Proof: First we show the continuity of h with respect to t. For a fixed X G X, let F : 
[Q, l] --+ 2'" and g : [O, l] X U" --+ R be defined by 

Also let k : [O, l] Ã‘ 2'" be defined by (3.1) for these F and g. Since F i t )  is a compact 
convex set and g(t,  y)  is a strictly convex function in y, k ( t )  is a singleton. The other 
conditions of Lemma 3 can be easily checked, and since h(x, t )  = k(t), h is continuous with 
respect to  t .  

Next we show the continuity of h with respect to (X ,  t )  G X X [O, l]. Let E > Q be given. 
By the continuity of 0 on X, there exists 6i > 0 such that for X' E X 

Using the continuity of h in t ,  we can choose (^ > 0 such that for t' G [O, l] 

Pu t  6 := rnin{&,J2}. For any (x1,t') E X X [O, l] with Hx' - xll < 6 and \t' - t \  < 6, using 
(3.3), (3.4) and Lemma 2, we see 

Therefore h is continuous a0t (X, t ) .  D 

Now we introduce the assunlption of f in [6], which plays the crucial role for the existence 
of a continuum of zero points. 
Assumption 5 The function f : Un Ã‘ -Rn satisfies 

(a) f is continuous, 
(b) for any X G 9Un, 

f i (x)  { 2 0  if x i = 0  
5 0  if x i = l ,  

(c) for each X G V ,  there is p (x )  E R?+ such that J I ( X ) ~  f (X) = 0. 
By Zf we denote the set of zero points of f ,  i.e., 

Remark: According t o  Assumption 5 (c), either f ( X )  >_ 0 or f (X) 5 0 implies X 6 Zf. 

Now we are ready to prove the existence theorem Theorem 4.3 of Herings, Talman and 
Yang [6]. I t  should be  noted that their theorem is more general and holds for point-to-set 
maps. 
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Theorem 6 Let f : Un -+ Rn be a function satisfying Assumption 5. Then the set 
contains a connected component containing 0 and e. 

To prove the theorem, we first prove the following lemma. 
Lemma 7 Let f : Un -+ R" be the function satisfying Assumption 5 and let h : X X [O, l] -+ 
Un be defined by (3.2). Then for (X,  t )  G X X (0, l], (X ,  t) G Ct if and only if X E Zf n q). 
Proof: To prove the "only if" part let (X,  t )  be a point in Ch. Then we see 

Then P (x )  = X and X = rt(x + f (X) ) .  Now we only need to show that X G Zf . We define 
f, h and Q{ for i E 12n as follows: 

and consider the minimization problem: 

n~inimize f (y)  
subject to y E X; h(y) = 0; gi(y) < 0 for i G 12n- 

Note that the feasible region of this problem is exactly ̂ l(t). Let J := { i 1 i G Ian; = 0 }, 
which is the union of Jo := { i  1 i E In; yi = 0 }  and J1 := { i  1 i G In; yi = l}. Due to the 
linearity of constraints, it is readily seen that the problem satisfies a suitable constraint qual- 
ification, e.g., Abadie's constraint qualification. Therefore we obtain the necessary condition 
at a solution X that 

f (X)  = Aoe + Y, A,(-ei) + J- he i  
iâ‚¬ iGJi 

for some An E R and Ai > 0 for i G J. If X 6 W ,  then Jo U Ji = 0 and this condition 
reduces to f (X) = Aoe. According to Assumption 5 (c), we obtain A. = 0, and hence X G Z<. 

We then assume X G QVn and consider the following three cases. 
Casel: Jo # 0 and J1 # 0. 
By Assumption 5 (b), for any i G Jo and V' G J1, we have 

so that AO = 0. Then Ai = 0 and A;, = 0, and hence X E Zf. 
Case 2: Jo # 0 but Jl = 0 
By Assumption 5 (b), we have A0 - \, > 0 for i G Jo. Then A. > 0 and 

Applying Remark, we obtain X G Zf. 
Case 3: Jo = 0 but Jl # 0 
By Assumption 5 (b), we have A. + A; < 0 for i G Jl. Then An < 0 and 
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Again applying Remark, we obtain X C Zf. 
Next we prove the "if" part. Suppose X G Zf n Q ( t ) ,  then P ( x )  = X and f ( x )  = 0. Thus 

and 
h{x,  t )  = r@(x))  = r t ( x )  = X ,  

because X C H ( ^ ) .  Therefore ( x , t )  G C/;, and the proof is completed. CI 

Now we give the proof of Theorem 6. 
Proof o f  Theorem 6 
Note tha,t the function h : X X [ O ,  l ]  -+ Un of (3.2)  is continuous b y  Theorem 4. According 
to  Theorem 1 there exists a connected subset D of Ch. such that both D D (Un  X { O } )  and 
D n (Un  X { l  1) are nonvacant. Suppose (X, O ) ,  ( X ' ;  1 )  E D ,  then we have 

and 
x1 = h(xl,  l )  = r M x ' ) )  = e .  

Then (0 ,0) ,  ( e ,  1 )  6 D. Let Px : X X [ O ,  l ]  -+ X be the projection onto the first coordinate. 
Since Py; is continuous and D is a connected subset of Ch, we obtain a connected set Px(D)  C 
Zf which contains two points 

0 = Px((O, 0 ) )  and e = P,((e, l ) ) .  

Now the proof is completed. 

4. Example 
In this section, we give an illustrative example as a geometric interpretation of Theorem 6. 
Let f : U2 -+ R2 be defined by 

where p and v are natural numbers. For each p and v ,  the continuity of f is clear. We 
easily see that  

. f 1 (0 ,3 -2 )  = X ;  20; f2(.ri,O) = ^  2 0 

and 
f l ( l ,  x2) = 2(x; - 1 )  < 0; f2(x1, 1 )  = 2(xY - 1 )  ̂  0. 

Next, for each X c let p(x) = ( 1  + x2,l + x# 6 R L ,  then J I (X ) ' "  / ( X )  = 0. Hence 
Assumption 5 (a), (b) and (c) a,re satisfied. It is clear to see that 7ij contains a connected 
component 

S := { ( t ,  t-̂ \ t  e [ O ,  l ]  } 

connecting 0 and e. The con~ponent S of this example can have the following three different 
shapes depending on the values of p and v: 

(i) If p = v,  S = { ( t ,  t )  I t  E [ O ,  l ]  }, which is the diagonal set of U2. 
(ii) If p > v ,  S is an arc linking two corners above the diagonal set. 

(iii) If p < v ,  S is an arc linking two corners below the diagonal set. 
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