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Abstract By developing an algorithm, Herings, Talman and Yang [6] recently proved the following
interesting and deep theorem: A correspondence ¢ from the n-dimensional unit cube U™ to the n-dimensional
Euclidean space R™ has a continuum of zero points containing the origin and the vector of all-ones if the
correspondence satisfies certain conditions. In this note we give an alternative proof of the theorem in the
case where the correspondence ¢ : U™ — R™ is single-valued.

1. Introduction

Since the appearance of the celebrated Brouwer’s fixed point theorem, various fixed point
theorems have been established. However, most of them only guarantee the existence of
a single fixed point, and, as far as we are aware of, there are few existence results for
multiple fixed points. Herings, Talman and Yang [6] recently demonstrated, by develop-
ing a simplicial algorithm, the following theorem (Theorem 4.3 of [6]) in a constructive
manner: there exists a connected set of zero-points of a correspondence ¢ : U™ — R™ con-
taining the origin and the vector of all-ones if the correspondence satisfies some suitable
conditions, where R" is the n-dimensional Euclidean space and U™ is the unit cube of R",
ie, Ut ={z|z€R" 0<a;<1foralli=1,2,...,n}. This theorem is interesting and
deep, because it implies Brouwer’s fixed point theorem as a special case. For the above
theorem, Herings and Talman [5] provided an alternative existence proof. In this note we
present a new and intuitively understandable proof of this theorem based on a theorem
of Browder [1]. Our framework also gives a natural path-following interpretation of the
algorithm of Herings, Talman and Yang [6], which is based on the three decades of signif-
icant development of fixed point computation, e.g., Scarf [9], Eaves [3], van der Laan and
Talman [8], and Kojima and Yamamoto [7].

This paper is organized as follows. In Section 2, we give some preliminaries. In Section
3, we present the main result. In Section 4, we give an example as a geometric interpretation
of the theorem.

2. Preliminaries

We denote the set of all real numbers by R, the set of integers {1,2,...,n} by I,. For any
z,y € R*, ¢ > y means z; > y; for 1 € [, z > y means z > y with some j € I,, such that
x; > y;, and > y means z; > y; for ¢ € I,. We write 0 :=(0,0,...,0)7, e :=(1,1,...,1)T
and e := (0,...,0,1,0,...,0)T fori €I, and R}, :={z |z € R*; > 0}. For a subset
A of R™, OA denotes the boundary of A in R". A function P : R* — U™ is said to be the
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orthogonal projection from R™ onto U™ if

(2.1) P(x) = argmin{ |}z — ]l |y € U},
where ||-|| denotes the Euclidean norm. For a subset X of R™ and a function h : X x[0,1] —
X, we define a subset C}, of X x [0,1] as follows.

(2.2) Ch :={(z,t) | (z,t) € X x [0,1]; © = h(z,t) }.

Let f : U™ — R™ be a continuous function and let X be an open convex subset of R"
containing U". We define a function 6 : X — R" by

(2.3) 0(z) := P(z) + f(P(x)).

Since the orthogonal projection P is a retraction onto U", 6 is continuous on X and also
0(z) =z + f(z) for z € U™.

For each ¢ € [0,1], we define the subset Q(¢) of U™ and a retraction r; : R* — §(t) as
follows.

(2.4) Q) == {z|zelUm T, zi=nt}
(25) r(@) = axgmin{lle —yll |y € ) }.

The topological space Y is said to be connected if it is not the union of two or more
nonempty disjoint closed sets. A subset of Y is called connected if it is connected as a
subspace of Y. It is well known that the connectedness is a topologically invariant property.
In particular, the continuous image of a connected set remains connected. For a subset Z
of R™ and a point € Z, the connected component of  in Z is the union of all connected
subsets of Z containing x. A subset of Z is simply called a connected component of Z if it
is a connected component of some point in Z.

3. Main Result

To prove the main theorem we require the following theorem, which is a special case of
Theorem 2 in Browder [1].

Theorem 1 Let X be an open conver subset of R* and let h : X x[0,1] — X be a continuous
function. Suppose there exists a compact subset K of X such that h(X x[0,1]) C K. Then
there exists a connected component D of Cy, defined by (2.2) such that both of DN (X x {0})
and DN (X x {1}) are nonempty.

In this theorem, X x {¢} is homeomorphic to X for each fixed ¢ € [0,1]. Then the
function A(-,%) has a fixed point in X for each ¢t € [0,1] by Brouwer’s fixed point theorem.
We here introduce two lemmas necessary to prove the main theorem.

Lemma 2 For the retraction ry : R* — Q(t) of (2.5), it holds that ||ri(z)—r(2)|| < ||lz—2'||
for z, 2’ € R".

The proof is straightforward and will be omitted. The following is Corollary 8.1 of Hogan [4].
Let 2" denote the power set of R".

Lemma 3 Let F : R — 2F" be a point-to-set map and let g : R x R* — R be a real-valued
function. Let the point-to-set map k : R — 27" be defined as

(3.1) ' k(t) := argmin{ g(t,y) |y € F(t) }.

Suppose F is continuous at t in the sense of point-to-set map, g is continuous on {t} x F(?),
k is nonempty and uniformly compact neart, and k(t) is a singleton. Then k is continuous
at t. :
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Lemma 2 and Lemma 3 yield the following theorem.
Theorem 4 Let X be an open convex subset of R™ containing U™ and let f : U™ — R™ be a
continuous function. Let the orthogonal projection P : R* — U™, the function 6 : X — R",
the set Q(t) and the retraction r, be defined by (2.1), (2.3), (2.4) and (2.5), respectively.
Then the function h : X x [0,1] — U™ defined by

(3.2) h(z,t) := ry(0(z))

is continuous on X x [0,1].
Proof: First we show the continuity of 2 with respect to t. For a fixed z € X, let F :
[0,1] = 2" and g :[0,1] x U™ — R be defined by

F(t) := Q) and g(¢,y) = [|0(z) — y|*.

Also let &k : [0,1] — 2Y" be defined by (3.1) for these F' and g. Since F(t) is a compact
convex set and g¢(t,y) is a strictly convex function in y, k(¢) is a singleton. The other
conditions of Lemma 3 can be easily checked, and since A(z,t) = k(¢), h is continuous with
respect to {. '

Next we show the continuity of h with respect to (z,t) € X x [0,1]. Let € > 0 be given.
By the continuity of 6 on X, there exists 6; > 0 such that for 2’ € X

(3.3) 10(") — 0(z)]| < e/2if ||2" — 2| < &;.
Using the continuity of & in ¢, we can choose §; > 0 such that for ¢’ € [0, 1]
(3.4) |h(z,t') — h(z,t)|| <e/2if |t —t] < &,.

Put § := rﬁin{51,62}. For any (z',t') € X x [0,1] with ||z’ — z|| < 6 and |t/ — | < 6, using
(3.3), (3.4) and Lemma 2, we see
Ih(a, ) = h(z, ) < [[A(2’,2") = h(z, )| + [|A(z, ') — h(z, )|

< |lru(0(2")) — ru(6(2))|| + /2

< |l6(z") — 6(2)|| +£/2 < e.

Therefore h is continuous at (z,1). a
Now we introduce the assumption of f in [6], which plays the crucial role for the existence

of a continuum of zero points.

Assumption 5 The function f: U™ — R"™ satisfies

(a) f is continuous,

(b) for any z € U™,
fi(x){ S 0 Zf r; = 1,

(¢) for each x € U™, there is p(z) € R, such that p(z)" f(z) = 0.
By Z; we denote the set of zero points of f, i.e.,

Z;={z|zeU" f(z)=0}.
Remark: According to Assumption 5 (c), either f(z) > 0 or f(z) < 0 implies z € Z;.

Now we are ready to prove the existence theorem Theorem 4.3 of Herings, Talman and
Yang [6]. It should be noted that their theorem is more general and holds for point-to-set
maps.
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Theorem 6 Let f : U" — R"™ be a function satisfying Assumption 5. Then the set Zy
contains a connected component containing 0 and e.

To prove the theorem, we first prove the following lemma.
Lemma 7 Let f: U™ — R" be the function satisfying Assumption 5 and let h : X x[0,1] —
U™ be defined by (3.2). Then for (z,t) € X x [0,1], (z,t) € Cy, if and only if x € Z; NQ(2).
Proof: To prove the “only if” part let (z,t) be a point in C}. Then we see

z = h(z,t) = r(0(z)) € Q).
Then P(z) = z and = = ry(z + f(z)). Now we only need to show that z € Z;. We define
f, h and g; for ¢ € I, as follows:

n

f) = gly =G+ F@I ) =D w5 —nt

j=1

| - —w if1 €I,
91(:’/) - { Yin— 1 if i € I, \ L,

and consider the minimization problem:

minimize f(y)
subject to y € X; h(y) = 0; ¢i(y) <0 for i € I,.

Note that the feasible region of this problem is exactly Q(¢). Let J := {7 | i € Ia,; gi(y) =0},
which is the union of Jo :={i¢|i€ I,; y; =0} and J; := {i |t € I,; y; = 1}. Due to the
linearity of constraints, it is readily seen that the problem satisfies a suitable constraint qual-
ification, e.g., Abadie’s constraint qualification. Therefore we obtain the necessary condition

at a solution z that
f(z) = Aoe + E /\z-(—ei) + E A€
i€Jo 1€J1
for some \g € Rand A\; > 0 for i € J. If ¢ ¢ QU™ then Jy U J; = §) and this condition
reduces to f(z) = Age. According to Assumption 5 (c), we obtain Ao = 0, and hence z € Z;.
We then assume z € QU" and consider the following three cases.
Casel: Jy # 0 and J; # 0.
By Assumption 5 (b), for any 7 € Jy and ¢’ € J;, we have

)\O—AiZOand)\o+)\,~r§0,

so that A\g = 0. Then A\; =0 and \; =0, and hence z € Z;.
Case 2: Jo £ 0 but J; =0
By Assumption 5 (b), we have Ay — A; > 0 for 7 € J;. Then )¢ > 0 and

f(x) =Xoe+ > M(—e) > 0.
i€Jy

Applying Remark, we obtain z € Z;.
Case 3: Jo =0 but J; # 0 .
By Assumption 5 (b), we have Ao + \; < 0 for ¢ € J;. Then Ay < 0 and

f(z) = e+ Z et <O0.
=NA
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Again applying Remark, we obtain z € Z;.
Next we prove the “if” part. Suppose z € Z;N§(t), then P(z) = z and f(z) = 0. Thus

0(a) = P(z) + f(P(a)) = @

and

h(z,t) = r(0(z)) = ri(z) = =z,

because = € (t). Therefore (z,t) € C} and the proof is completed. a
Now we give the proof of Theorem 6.

Proof of Theorem 6

Note that the function h: X x [0,1] — U™ of (3.2) is continuous by Theorem 4. According

to Theorem 1 there exists a connected subset D of Cj, such that both D N (U™ x {0}) and

D N (U™ x {1}) are nonvacant. Suppose (z,0),(z',1) € D, then we have

z = h(z,0) =ro(0(z)) =0

and

' =h(z',1) =r(6(z')) =e.

Then (0,0),(e,1) € D. Let P, : X x[0,1] = X be the projection onto the first coordinate.
Since P, is continuous and D is a connected subset of C},, we obtain a connected set P,(D) C
Z¢ which contains two points

0 = P,((0,0)) and e = Py((e, 1)).

Now the proof is completed. O

4. Example
In this section, we give an illustrative example as a geometric interpretation of Theorem 6.

Let f : U? — R? be defined by
f(z) = ((f = 2) (L + z1), (27 — 25) (1 + 22)) T,

where p and v are natural numbers. For each p and v, the continuity of f is clear. We

easily see that
f1(07932) =z5 > 0; fz(ifho) =z{ >0

and

filyz2) = 2(2h — 1) <0; fo(z1,1) =2(2f = 1) < 0.

Next, for each z € U? let p(z) = (1 + 22,1 + @1)" € R%,, then p(z)" f(z) = 0. Hence
Assumption 5 (a), (b) and (c) are satisfied. It is clear to see that Z; contains a connected
component
S = {(t,t5)T |tel0,1]}

connecting 0 and e. The component S of this example can have the following three different
shapes depending on the values of y and v:

() Y p=v,5={(1t)]|te0,1]}, which is the diagonal set of U?.

(ii) If u > v, S is an arc linking two corners above the diagonal set.
(iii) If 4 < v, S is an arc linking two corners below the diagonal set.
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