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Abstract Recently, Paskov reported that the use of a certain pseudo-random number generator, rani(), 
given in Numerical Recipes in C, First Edition makes Monte Carlo simulations for pricing financial deriva- 
tives converge to wrong values. 

In this paper, we trace Paskov's experiment, investigate the characteristics and the generation algorithm 
of the pseudo-random number generator in question, and explain why the wrong convergences occur. We 
then present a method for avoiding such wrong convergences. A variance reduction procedure is applied, to- 
gether with a method for obtaining more precise values, and its correctness is examined. We also investigate 
whether statistical tests for pseudo-random numbers can detect the cause of wrong convergences. 

1. Introduction 
Monte Carlo methods are effective for pricing some financial derivatives, especially when 
the price cannot be calculated analytically because it depends on the historical movement of 
the underlying variable or on multiple underlying variables [3]. For example, the payoffs of 
look-back options depend on the maximum or minimum prices of underlying assets during 
the lives of the options. The remaining annuities of Mortgage-Backed Securities depend on 
the interest rates of the past, as we will describe in Section 2. The prices of such options 
are therefore difficult to calculate analytically, but easy to estimate by using Monte Carlo 
simulation. 

However, it is generally known that pseudo-random numbers can produce pathological 
results in Monte Carlo simulations. Further, this phenomenon is not restricted to poor or 
simple random number generators. In the Physics case reported by Ferrenberg [2], the use of 
a high-quality generator gave incorrect results, while a simple linear congruential generator 
gave correct results. In financial applications, Paskov reported that the use of a certain 
pseudo-random number generator, rani(), which is given in Numerical Recipes in C, First 
Edition [g], makes Monte Carlo pricing of derivatives converge to wrong values [ B ] .  We will 
focus on this phenomenon in the present paper. 

In recent years, low-discrepancy sequences have been investigated as substitutes for 
pseudo-random numbers in financial applications. Paskov investigated the effectiveness of 
low-discrepancy sequences in pricing a Collateralized Mortgage Obligation (CMO) [8]. Mo- 
rokoff pointed out that in high dimensions, low-discrepancy sequences are no more uniform 
than pseudo random numbers [5]. Although i t  is known that low-discrepancy sequences 
improve the convergence speed, their applications are still restricted. 

Consequently, there is no almighty sequence, and the Monte Carlo method with "pseudo- 
random" numbers is still effective. Further, it is important to know the cause of pathological 
results if they occur. 
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The objectives of this paper are to identify why the simulation converged to wrong values 
with ran1 () in Paskov7s experiment, and to investigate the anomaly so that it can be avoided 
in future. In section 2, we trace Paskov's experiment by using a pass-through Mortgage 

acked Security (MBS), which is simpler than the CMO used by Paskov in the sense that it 
as no tranches. In section 3, we introduce the algorithm of the ran10 generator. In section 

4, we analyze ran10 and show why Monte Carlo simulations converge to wrong values. We 
also present a method for avoiding the anomaly, and apply a variance reduction procedure 
to determine whether the results are precisely correct. In section 5, we investigate whether 
a statistical test for random numbers can detect the anomaly. Finally, we summarize our 
findings in section 6. This paper is a detailed and expanded version of Tajima, Ninomiya, 

2. Pricing Mortgage-Backed Securities (MBS) 
In this section, we trace Paskov7s experiment [g], in which Monte Carlo simulations for 
estimating the present value of Collateralized Mortgage Obligation (CMO) converged to 
wrong values when the random number generator ran10 [g] was used. 
2.1. MBS specification 
Paskov does not give the specification of the tranches of the CMO, so we simplify the 
problem into a pass-through MBS with no tranches. As we will show in Section 2.2, our 
simplification is sufficient for the same anomaly to be observed. The underlying pool of 
mortgages has a maturity of thirty years, and a cash flow occurs every month; in other 
words, there are 360 cash flows, and the dimension of the problem is also 360. Let C be the 
monthly payment on the underlying pool of mortgages. 

For 1 < k < 360, 
r k  - the appropriate interest rate; 
wk - the percentage of pre-payment; 

a360-k+1 - the remaining annuity; 
uk - the discount factor. 

Then, ak is given by 
n 1 

where ro is the current monthly interest rate. 
C and ak are assumed to be constants. rk, wk, and U,+ are stochastic variables, defined 

below. The interest rate follows the lognormal model, and the variable rk is computed as 
Â ¥  ri-, = K^~ '  ̂-̂-T~ , 

where &(l < k < 360) is an independent normal 
discount factor uk is given by 

k-1 1 

. - 

The prepayment model wk is a function of r k ,  and is 
1 + K2arctan(Ksrk + K^} 

The cash flow in month k is 
Mk = C'(l - w1) - - (l - ~ k _ ~ ) ( l  

Thus, the present value of the security 
all the months, 

360 

(2.2) 
random variable N(0 , l ) .  Then, the 

computed as 

wk + wka360--k+l). P-5) 
is the sum of the present values of the cash flows in 
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Figure 1: Monte Carlo Simulations Using Sobol and ran10 with Three Seeds 

In this experiment, we set the constants as follows: 
KO = 1/1.020201 ro = 0.075112 
Ki = 0.24 (T = 0.02 
K-> = 0.134 , C = 2000 
Ks = -261.17 X 12 a0 = 0 
KA = 12.72 W O  = 0 

To generate normal random variables N(0 , l )  from uniform random numbers [0,1), we 
used the inverse method given in RISK [14]. Obviously, 360 numbers are necessary for one 
path of Monte Carlo simulation. When we use pseudo-random generators such as rani(), 
we assign the numbers from one generator to 360 months sequentially. On the other hand, 
in the case with low-discrepancy sequences, we assign the i-th dimension of the sequence to 
the i-th month (1 < i <  ̂ 360). Consequently, if we focus on the correlation problem among 
360 variables, the serial correlations matter most with pseudo-random generators, whereas 
the independence among dimensions matters most with low-discrepancy sequences. 
2.2. Pricing using ran1 () 
Figure 1 shows the result of Monte Carlo simulations. The simulation using Sobol sequences 
converges to the correct value. But simulations using ran10 converge to three different 
values, all incorrect. This result is consistent with Paskov's study. For comparison, a result 
using drand480, a system-supplied random number generator of IBM xlC, is also presented. 
For details of Sobol sequences, see Sobol [10]. 

3. ran10 in Numerical Recipes in C, First Edition 
In this section, we investigate the characteristics of ran10 in Press et al. [g]. 

The ran10 algorithm is based on three linear congruential generators. Linear congru- 
ential generators generate a sequence of integers between 0 and m - 1 by means of the 
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recurrence relation 
Ij+l = a I j  + c (mod m). (3.1) 

If m,  a ,  and c are properly chosen, the period of the sequence will be equal t o  m. 
In rani(), one generator ixl with m1 = 259200, a1 = 7141, and cl = 54773, and another 

generator h with m2 = 134456, a2 = 8121, and 0 2  = 28411, are used to  generate a 
fractional value x[0,1) as 

1 1 

The second generator,ix3, with m3 = 243000, a3 = 4561, and 03 = 51349, is for shuffling 
using 97 buckets. Shuffling is a popular method of avoiding serial correlations of the output, 
which have a negative effect on the results of the Monte Carlo method. 

The ran10 algorithm is as follows: 
Initialization: Fill the 97 buckets with fractional values. 
Per Call: 

1. Select a bucket by using the value generated by ixy 
2. Return the value in the bucket as the output 
3. Fill the bucket with the fractional value generated by 2x1 and 2x2 

4. Analysis of the Anomaly 
In this section, we analyze the characteristics of ran10 and identify why the simulation 
converged t o  wrong values, then try to  avoid it. 
4.1. Discrepancy of points generated by ran1 () 
We first measure the discrepancy of the points generated by rani(). The discrepancy can be 
viewed as a quantitative measure of the deviation from uniform distribution, and is related 
t o  the error of the numerical integration [7]. For N points vo, v l ,  . . . , V N - ~  in [O, Ilk, k >, l, 
and a subinterval u = [O, u i )  X - X [O, uk),  where 0 < U^ < 1 for 1 < h < k, we define the 

- ~ ( ~ ) f d ~ ) l / z ,  (4.1) 

where A(u; N )  is the number of values of n , 0  < n < N ,  with vn G U, and V(u) is the 
volume of U. The L2-discrepancy can be calculated in 0(N2) time. 

Let xn be a 360-dimensional point whose z-th component is used for the i-th dimension 
of the n-th path of the simulation. We assign values as  

xn "̂  (a360(n-l)+li a360(n-1)+2; - . - 7 a.360(n-1)+360), (4.2) 
where a, is the 2-th output of ranl  (). 

We calculate the L2-discrepancy of xn (Figure 2). If the points are really random, the 
estimated value of L2-discrepancy is known to be 

and it decreases as the number of points increases, as shown by the straight line in Figure 2. 
However, the value never falls below 2 2 3 0 ,  which is reached after 4,000 points. The move- 
ment of the value has a pattern with a cycle of about 10,000 or 11,000 points. Consequently, 
xn has a cycle, and the accuracy of the integration does not improve after one cycle. 
4.2. Cycle of ranl () 
4.2.1. Floyd's Algorithm 
We have observed that  the points generated from the output of ran10 seems to  contain a 
cycle. In this section, we examine whether ran10 itself contains a short cycle. 
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Figure 2: The L2-Discrepancy of the Points Generated by ran10 

To obtain the cycle, we apply Floyd's algorithm, given in Knuth [4]. Suppose that we 
have a sequence of integers Xo, Xi,  X2 , .  . . with the range 0 < Xn < m, formed by a certain 
rule Xn+l = f{Xn). Then it is known that Xn is periodic, in the sense that there exist 
numbers A and p, for which although the values Xo, Xi, . . . , XÃˆ . . . , Xp+A_i are distinct, 

- Xn when n > p. That is to say, p, is the length of the transition state and A is the Xn+A - 
period of the stationary state. 

Floyd's algorithm utilize the fact that there exists a value n > 0 such that Xn = Xin 
and the smallest such value of n lies in the range p, < n < p, + A. Once n is found, p is the 
smallest i that satisfies Xi = Xn+i. If none of the values of Xn+i for 0 < i < p, is equal to  
Xn, A = n; otherwise, A is the smallest such i. 

Using the algorithm, we examine the cycle of the sequence generated by rani(). The 
algorithm can only be applied to sequences formed by the rule Xn+1 = f (Xn)? as mentioned 
above. But ranl () does the shuffling by using multiple buckets, and the output of ranl () 
does not correspond to the condition in the sense that it uses a series of historical values 
to generate another output, as well as the last output. Here we consider a vector Sn that 
consists of all the state variables of rani(), including %, ix2? ixs, and the contents of the 
97 buckets, instead of the output of rani(). Thus we can say that Sn+1 = f (Sn) holds, and 
can apply the algorithm. 

Unfortunately, the cycle is too large, more than 101Â° and we could not obtain it by 
computer simulations. Anyway, it is very large in comparison with the number necessary 
for Monte Carlo simulation of MBS, 360 X 106, and does not seem to affect the result of 
Monte Carlo simulations. 

We therefore focus on the most significant part of the output of rani(); that is, we modify 
ran10 to keep ix2 equal to zero, and apply the same algorithm. This time we obtain the 
cycle given in Table 1. 
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Table 1: p, and A of the Most Significant Part of ran10 

- 
average 

seed 

4.2.2. Validation of the result 
In the stationary state, the cycle of the sequence A should be equal to the least common 
multiple of m1 and m3. As in Section 3, ml = 259200 = 27 X 34 X 52, and m3 = 243000 = 
z3 X 35 X 53, and therefore A = Z7 X 35 X 53 = 3888000. This coincides with the result in 
Table 1. 

Wethen estimate the value of p, the length of the transition state. From the generation 
algorithm in Section 3, the transition state is caused by the initialization of the 97 buckets. 
We can see that if all the 97 buckets are visited and the values in them are flushed, the 
effect of the initialization disappears and the generator goes into the stationary state. 

If we assume that the buckets in ran10 are visited at random instead of through the 
value of ix3, the expected number necessary to visit all the buckets, which is equal to the 
expected p, can be calculated as in the coupon collector's problem [6], 

This theoretical value is consistent with the experimental results given in Table 1. 
Anyway, p, is much smaller than A. Further, one path requires 360 random numbers, 

and it takes only a few paths to reach the stationary state. Hence the effect of the initial 
instability is subtle, and can be ignored when examining the wrong convergence. 

4.3. The cycle when applied to MBSs 
We continue to examine the cycle of ran1 () with the precision l /ml ;  that is, we ignore the 
least significant part of the value, and consider the effect of the cycle when it is applied to 
the pricing of MBSs. 

Here, A = 3888000 = 360 X 10800; in other words, the cycle is a multiple of the dimension 
of the problem. Thus, when applied to the pricing of an MBS with 360 dimensions, there 
exists a cycle of 10,800 for each dimension. If we consider the 360-dimensional point xn 
given in equation (4.2), 

2 
lxn+10800 - xn l < 1x1 : L~~ - norm of X 

m\ 
(4.5) 

holds for n > f^/360. This inequality means that, after 10800 points, every new point falls 
in the neighborhood of one of the existing points. In other words, a Monte Carlo simulation 
for an MBS has only 10,800 paths. This coincides with the result obtained in Section 4.1. 
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Figure 3: Simulation Almost Converges to the Value of the First 10800 Trials 

To confirm that the cycle of 10800 is the cause of the wrong convergence, we compared 
two Monte Carlo simulations, one a simulation of 1000000 paths using rani(), and the other 
the resulting value after simulation of 10800 paths using the simplified version of ran10 in 
which 

1 
X = (ix1 + 0.5) X - 

m1 
(4.6) 

instead of equation (3.2). That is to say, we approximate the least significant part by 
0.5 X l /m l  and stopped the simulation after just one cycle. 

Figure 3 shows the results with three different seeds. The full simulation converges to  
the value obtained with the first 10,800 paths which is represented as a horizontal line. The 
amplitude is caused only by the least significant part. 
4.4. Avoiding the cycle 
Here we examine whether we can avoid the incorrect convergence. We have observed that 
the inaccuracy is caused because the cycle of ran10 is a multiple of the dimension of the 
problem, 360. 

Considering that the cycle of the most significant part of ran10 A = 3888000 = 27 X 

35 X 53, Monte Carlo simulations will converge to the correct value if the dimension of the 
problem is a prime. A simple way to realize this is to skip several random numbers after 
every path. Namely, for the 360 dimensional point xn, we assign values as follows: 

Xn = (0(360+a)(n-l)+l, a(360+et)(n-l)+2, m . 7 a(360+n)(n-l)+360) (4.7) 
where a is the number of skipped random numbers. Figure 4 shows the result of Monte 

Carlo simulations using ran10 with the skip numbers 13, 41, and 143, which give the primes 
373, 401, and 503 when added to 360. If we compare the results with those obtained by 
using drand48(), we can say that the anomaly of ran10 is removed. 

Further, to check whether they converge to the correct value precisely, we also apply 
a variance reduction procedure, the antithetic variable technique [3]. That is to  say, after 
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Figure 4: ran10 with Skips after Every 360 Random Numbers 

calculating one path by using a normal random number vector fn, which is generated from 
the uniform random number vector xn as in Section 2.1, we also calculate another path by 
using -fn. Figure 5 shows the result obtained by using this antithetic variable technique. 
In the figure, the X-axis represents the number of paths, not the number of random number 
vectors. That  is to  say, the number of random number vectors generated is the half of the 
number of paths, and is equal to 500000. 

From these experiments, we conclude that  if we apply some appropriate techniques, the 
correct value can be calculated with a good convergence speed by using rani(). 

5. Statistical Tests 
In this section, we investigate whether a statistical test for random sequences can detect 
the anomaly that  we have isolated in rani(). There are many statistical tests for checking 
various aspects of randomness. For various examples of these tests, see Knuth [4] or Tezuka 
[12]. Here, t o  detect the anomaly in question, the test needs to  use a large number of random 
numbers, namely, more than 3888000. We focus on the collision test as a representative of 
such tests. 
5.1. Collision test 
The collision test is related to  hashing. Consider a situation in which n balls are thrown 
into m buckets a t  random, where m is much larger than n. A collision occurs when more 
than one ball falls into one bucket. We can calculate the average number of collisions and 
the probability distribution of the number of collisions, for a given m and n. In Knuth's 
example [4], 

m = 220, n = =l4, E[#o  f collisions] = 128 

collisions < 101 108 119 126 134 145 153 
with  probability .009 .043 .244 ,476 .742 .g46 ,989 
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Figure 5: ran10 with Skips and Antithetic Variable Technique 

By repeating this test many times independently, we can check whether the results are 
biased. 
5.2. Looking for the settings 
When the number of buckets m is equal to 2Â¡' we use a random numbers to select the 
destination of one ball. Namely, by checking whether each number is larger than 0.5 or not, 
we generate a-bit information. Thus, to detect the anomaly, the following conditions should 
be satisfied: 

a X n > 3888000 

3888000 0 (mod a) 
If the test is applied to ran10 with these conditions satisfied, every throw of a ball results 

in a collision, after 3888000 random numbers have been used. 
We-looked for the parameters that satisfy the conditions above, as in Table 2. With 

the first and second settings, the estimated number of collisions is too large compared with 
Knuth's example in Section 5.1. If we use a smaller value of n, the collision test cannot find 
the anomaly. On the other hand, the third settings requires 128 megabytes of memory, and 
a good computing environment. 

It is thus very hard to  detect the anomaly by applying the collision test without knowing 
the existence and the characteristics of the anomaly. 
5.3. Experiments 
We implemented the test, with the results shown in Figure 6. Following a different approach 
from that described in Section 5.1, we do not fix the value of n and plot the number of 
collisions as the number of balls increases gradually. The results shown are those of a one- 
time run, and not a summary of multiple runs. But they are sufficient for us to observe the 
anomaly. The X-axis represents the number of outputs of rani(), not the number of balls, 
so that the anomaly takes place at the same place on the X-axis. 
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Table 2: Possible settings of m and n 

0 1 e+06 2e+06 3e+06 4e+06 5e+06 6e+06 
# of random numbers 

m 
>25 

Figure 6: Number of collisions with various numbers of dimensions 

The following numbers of buckets are examined: m = 225, 226, 227, 228, Z2', and 230. 
Consistent with the condition in Section 5.2, the number of collisions rapidly increases after 
3888000 random numbers have been used with m = 225, 227, and 230. But with m = 225,227, 
228, and z 3 O ,  we can see another anomaly: namely, the number of collisions is still larger 
than the expected value before 3888000 random numbers have been used. m = 226 and 229 
are the only settings that  produce correct results. 

The second anomaly can be detected more easily than the first one, and this may be 
a sufficient reason to  avoid the use of rani(). However, we have not isolated the cause of 
the second anomaly. That  is to say, the number of dimensions for MBS evaluation that  
induces only the second anomaly, which corresponds t o  m = 228 in Figure 6, is not known. 
Therefore, the effect of the second anomaly on actual Monte Carlo simulations cannot be 
measured yet. 

Memory space [MB] 
4 

6. Conclusion 
We have investigated why the random number generator ran10 in Press et al. [g] caused 
wrong convergences when used for pricing financial derivatives. 

The main reason is that the cycle of ran10 is a multiple of the number of dimensions 
of the problem, 360. Like other multiples of 12, this is a common number of dimensions in 

n 
218 

E[# of collisions] 
2'' = 1024 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Anomaly in Monte-Carlo Methods 397 

the financial domain, because a year has 12 months, and the same phenomenon will occur 
if the generator is used for pricing other derivative securities. 

We have also presented a method for avoiding wrong convergences. Combined with the 
antithetic variable technique, ran10 can give the correct value with a good convergence 
speed. . 

We have observed that statistical tests used to measure the randomness of pseudo- 
random numbers have difficulty in detecting the anomaly of rani(). The effect of another 
anomaly found in the experiment is not known. 
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