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Abstract This paper investiga-tes the search problem for a moving target when a search path is given in 
advance. The searcher's strategy is represented by a randornized look strategy, that is, the probability with 
which he looks in his current position at  each discrete time. The searcher knows the probabilistic law about 
which one of some options the target selects as his path. If the detection of the target occurs by the looking, 
the searcher gains some value but must expend some cost for the looking. The searcher wants to determine 
his optimal look strategy in order to maximize the expected reward which is defined as the expected value 
minus the expected cost. He can randomize his look strategy by the probability that he looks in his current 
position. We prove the NP-completeness of this problem and propose a dynamic programming method to 
give an optimal solution which becomes the bang-bang control in the result. We derive some characteristics 
of the optima,l look strategy and analyze them by some numerical examples. 

1. Introduction 
Since the 1970's, Pollock[l] , Hellman [2], Iida[3], Dobbie[4], Kan [5] and other researchers 
have studied optimal search problems for a moving target. Brown[6] proposed an efficient 
algorithm to find an optimal allocation of continuously divisible search resources maximizing 
the detection probability of the moving target and Washburn [7] generalized this met hod and 
called it the FAB algorithm. Stromquist and Stone181 made a great contribution to purify 
this kind of optimizing search problems mathematically. In many studies, the criterion of 
the optimization was the detection pr~ba~bility. Iida and Hozaki[9] investigated an optimal 
solution based on the reward criterion by which the searcher could consider the search from 
the view point of the cost-performance. 

In these mathematical models, the searcher is allowed to move or allocate search re- 
sourses anywhere he likes. In recent years, the search problem in which the searcher path 
is constrained has been discussed by some researchers. In this problem, called the path 
constrained search problem(the PCSP) , the ability of the searcher's movement is taken into 
consideration in the sense that the next positions he can move to are limited depending 
on his current position. This assumption looks natural in some realistic models. Eagle[10] 
proposed a solution method based on the dynamic programming to give an optimal search 
path of maximizing the detection probability. Stewart [l l] proposed an approximate solution 
procedure using the branch and bound method for this problem. Eagle and Yee[12] extended 
the Stewart 'S method to an exact method, which performs better than the previous dynamic 
programming method. Under the criterion of the detection probability, the search must be 
conducted at all times because the search operation costs nothing. If we need to consider 
the search cost in the operation, a non-search strategy could be optimal from the view point 
of cost-performance. Hohzaki and Iida[l3] proposed a branch and bound method to give an 
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Randomized Look for a Given-Path Target 3 75 

optimal strategy which consists of two strategies, the route strategy and the look strategy, 
for the path constrained search problem with the reward criterion. Nakai[14] studied an 
optimal look strategy of maximizing the detection probability in a simple model which is 
the same as ours. 

In this paper, we consider one of the simplest models of the PCSPs with the reward 
criterion in the discrete search time period T. The searcher is given a search path in 
advance. A target takes one of some options of his paths with a certain probability law 
which is known to the searcher. The detection of the target at time t brings some value 6 
to the searcher and then the search operation terminates. The detection at time t could 
occur only by the searcher's looking in his current position, which expends search cost 
ct. The searcher is interested in determining his optimal look strategy of maximizing the 
expected reward during T which is defined as the expected value minus the expected cost. 
The look strategy is randomized and represented by the look probabilities {p(t), t E T} so 
that the searcher looks in his current position with probability p(t) and does not look with 
probability 1 - p(t) at time t. 

In the next section, we describe the mathematical model of our problem. The NP- 
completeness of our problem is proved in Section 3. A dynamic programming approach 
to an optimal look strategy and the discussion about some characteristics of the optimal 
solution are developed in Section 4. By some numerical examples, we analyze the sensitivity 
of system parameters and verify the validity of theorems obtained in this paper. 

2. Modeling of Search Problem 
In this section, we state some assumptions of a search problem and construct the mathe- 
matical model. Assumptions of the search problem are as follows. 

A searcher moves on a search space in discrete time T = {l, , T}. A path is given 
to the searcher in advance. A target moves on the same search space. The target has 
some options of paths to move along. The whole set of paths is denoted by 0. When 
path W E 0 comes across the search path on the way is denoted by W (t). That is, if 
the path W and the search path cross each other at time t E T, W (t) == 1 and otherwise 
w(t) = 0. The probability xo(w) of the target's selecting path W is guessed for W 0 
and known to the searcher. 
The searcher can searches (looks) into his current position to detect the target, if nec- 
essary. If the target is there when the searcher looks at time t ,  the searcher can detect 
the target with probability pf . Events of the detection at each time are independent 
of each other. 
At time t, the searcher gains non-negative value 6 on the detection of the target but 
loses non-negative cost Q as the looking cost. 
The searcher determines his randomized look strategy {p(t), t E T }  at each time and 
does not change it during the search operation. p(t)  denotes the probability with 
which the searcher looks in his current position at time t and is between 0 and 1 of 
course. 
The searcher wants to find his optimal look strategy of maximizing the expected 
reward which is defined as the expected value minus the expected cost. 

NP- Completeness 
We simplify our model so that the look strategy is not randomized but includes only two 
options of looking or non-looking at each time. By assumptions stated in the previous 
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section, the searcher comes cross the set of the target paths G = {W ? 01 W (t) = l} at time t . 
Now we consider a decision problem M RPGP(H1 , G, - , OT, m; R)  which answers whether 
or not the searcher can gain a certain reward R by m looks at most, where MRPGP is the 
abbreviation for Maximum Reward Problem with Given Search Path. When we specify value 
K by a positive constant V and make cost Q be zero, MRPGP(O1 , - - , HT, m; R) becomes 
a decision problem concerning the detection probability, MDPGP(Sl\, - - - , HT, m; P) which 
answers whether or not the detection probability P = R/V can be obtained by m looks 
at most, where MDPGP is the abbreviation for Maximum Detection Probability Problem 

Given Search Path. 
Let us prove the NP-completeness of MRPGP(-} by that of MDPGP(-) .  Now we 

consider an instance of MD P G P  (a, - , Oy , m; P) as follows. 
(1) In the search operation, the perfect detection is performed, that is, pt = 1, t E T. 

When the searcher looks in the cell and the target is there, the detection occurs with 
certainty. 

(2) The probability of the target path selection is positive, that is, r o ( w )  > 0 for any 

(3) The searcher can come across the target on any path sometime. That is, U  ̂ Ht = 0 .  

(4) P equals one and m is less than T. 
Since the searcher can detect the target coming across with certainty, this instance is equiv- 
alent to the question a,bout whether or not the searcher can select m looks or m subsets 
exhaustively covering the whole pa,th set 0 from the target path subsets 0 1 ~ 0 2 ,  - - - , OT. 
This problem is nothing but so-called the set covering problem SCP(^li, , H*; m) [l51 
which is known to be NP-complete. Therefore, the problem MRPGP(Q,i, . - , Or,  m; R) in- 
cludes the set covering problem as a special case. The input length of the former problem is 

,cnriog(i/~o(w))i  + ~ : = ~ r i o g ( l / ~ ~ ) i  +X:=, ~i +EL r ~ i  + m +  r i o g ~ i  while 
that of the latter problem is 101T + m under an adequate encoding scheme. We can easily 

e set covering problem SCP(HI,  - - , &; m) is polynomial transformable to 
the above instance of MRPGP(^l\, - - , Or, m; R) with parameters Vf = 1, ~f = 0, pt = 1, 
too. 
Theorem 1 MDPGP(! t I , - - - , f t r ,m ;  P) and MRPGP(H1, - .+ ,Hr ,m;  R) are both W- 
complete. 

4. Formulation of the Problem and Optimal Look Strategy 
Here we formulate an objective function of the problem by the randomized look strategy 
of the searcher {^(t), t = l, - - - , T}. At the first, let us consider the search operation 
during time period it, T] C [l, T]. Given that the target takes path W E H, the detection 
probability of the target m p ,  W )  and the cumulative search cost Cf (p) during [t , r] is given 
for t < r 5 T by 

7- 

(4.2) 
t=t 

The target is detected at time T with the probability P{(% W )  - q 1 ( p 7  W) and if so, the 
searcher gains the value K but has expended the cumulative search cost Cl(^). If the 
detection does not occur until T, the searcher only loses the search cost C m .  Therefore, 
the expected reward during [t, T] is given by 
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T 

A ~ ( R W )  ZW - CT(p))(P:(ip, U )  - p - - ' ( p ,  W ) )  - c f ( p ) ( l -  . f f ( p , w ) )  
r=t 

(4.3) 

where P f l ( p ,  W )  is defined to be zero. Because the non-detection probability 1 - W )  
during [t, r] is the probability that there occurs no detection at time t and no detection 
during [t + 1, r] ,  we have 1 - P̂  ( p ,  W )  = (1  - P!(^, W ) )  ( l  - p̂ +1 ( p ,  W ) ) ,  which is verified 
from Eq. (4.1) too. By this equation, Eq. (4.2) and P a p ,  W )  = W (t)y( t)pt ,  we can transform 
the reward R: ( p ,  W )  as follows. 

R ~ ( P ~  4. 
T 

= {V, - C',{v))p;(ip, W )  + (1  - p;(v, 4)  y. (Vr - ~ W ) ( P t + l ( ^ )  - p*, 4) 
T=t+l 

= Vt^t)p(t)pt - CcipH) + R L . 1  (v,  W )  - w(t)v( t )p t I^ , , (v ,  4 (4.4) 
When the searcher executes the looking at time t and it fails to detect the target, the 
posterior probability of the target's selecting path W is calculated by 

A ~ v ( w )  Pr{the target selects path W \ non - detection occurs at t ime t } 

- - 74-41 - ptw(t)) 
1 - pt Ewfmt V(^ ' )  

(4.5) 

Assuming the probability law of target path selection is { ~ ( w ) }  at the beginning of time t ,  
the whole expected reward fS' ( p ,  V )  during [t l T ]  over all target paths is given by weighting 
fG' ( P ,  W )  with probability ~ ( w ) .  
m, '") = y .̂)iT(9' W )  . 

Noting that Siren i ' (w)w(t)  = Ewent V(") ,  by Eqs. (4.4) and (4.5), k T ( p ,  v )  can be trans- 
formed as follows. 

During time period [t, T ] ,  an optimal look strategy of the searcher gives the maximum of the 
objective function m, V )  to the target's path selecting probability { V ( ^ ) } .  Let denote 
the maximum by ftW. By using Eq. (4.7), we can partition the optimal value ft ( V )  as 
follows. 
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i f  f t + l ( ~ )  2 g t ( ~ )  , 
(4.8) i f  f t + M  < gt (4 

where g, (7r )  is defined by 

g t ( 4  = Pi% v 7r(W) - c, + 
went 

As known from the above transformation, an optimal look strategy during [t, T ]  is con- 
structed by adding { p ( t )  = 0 }  to the optimal strakegy of (7r)  during [t + l ,  T] or adding 
{ p ( ( )  = l }  to the optimal strategy of gt (4 during [t + 1 , T ] .  If we move time point t from 
T to 1, we can obtain the optimal strategy during the whole time period. This character- 
istic reminds us the dynamic programming technique which usually takes the time flow in 
reverse order. From now, we use the dynamic programming for convenience and reverse 

e time flow of the problem so that time points t = 1,2,  - , T are interchanged with 
k = T7 T - 1,  - .  , l ,  respectively, where term k means the residual time points up to termi- 
nating time T .  We redefine notation ~ ( t ) , p ~ ~ ~ ~ ~ f , i p ( t ) ~ ~ ~ , A ~ 7 ~ ,  ft(7r) and gt(7r) defined 011 
time t in the normal time flow by W ( k )  , p b  Vfc , c h  ip ( k )  , flh fk (7r) and g m  on term k 
in the reversed time flow, respectively. 

We reconstruct our optimizing problem in the fasion of the dynamic programming be- 
cause it is easy and comprehensible. If the looking is executed at term k ,  it gives the searcher 
the possible gain K wit h the detection probability pi 7r ( W )  and inevitable expense ck . 
The failure of the detection transforms the path selection probability TT into the posterior 
probability Ak7r and the term changes to k - 1. If the looking is not executed, the searcher is 
given no gain and no cost with no change of TT .  We already have the function fk(7r) defined 
on term k which is the maximum expected reward by an optimal look strategy since term 
k given that the path selection probability at  the beginning of term k is TT. This objective 
function satisfies the following recursive equation, which is clear from the above explanation 
or Eq. (4.8). We represent one of the optimal look strategies by { p * ( k ) ,  k = T7 - , l } .  

ffc-i(r), i f  fk - i (7r )  :> gfc(7r); p* (^ )  = 0 in this case - - 

g k ( ~ ) ,  i f f f c - ~ ( ~ r ) < q f c ( ~ i - ) ; $ ( k ) = l  i n t h i s c a s e  

lnax { f k - i ( ~ ) ~ g k ( . T T } }  1 (4.10) 
where 

An initial condition is given by 
fQ(7r) = 0 for any TT . (4.12) 

We may proceed the recursive estimation (4.10) from k = 1 upto T and find fr(7ro). In 
Eq. (4.10), fk-l (7 r )  and g ~ ;  (7r)  indicate the possible maximum rewards in the case of the non- 
looking and the looking at term k ,  respectively. By this dynamic programming approach, 
we can elucidate some characteristics of the optimal strategy. 
Theorem 2 The optimal strategy has the following characteristics. 

(i) There is always an optimal look strategy of being the bang-bang control, that is, p*(k)  = 

1 or 0 for any term k .  
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fk(7r) is non-decreasing function for term k, that is, 0 < f k - l ( ~ )  < fk  (^). 
If the searcher does not hit any target paths at term k, there is an  optimal strategy so 
that the searcher does not look at term k. 
If there is a certain n < T and 

p& < ck f o r  k = n 7 n -  1 , - - - , l  (4.1 3) 
holds, there is an optimal strategy so that the searcher finishes the search at term n, 
that is, (p*(k) = 0, k = n, - - - ,  1. 

If  fr(-7r) = 0, the following holds. 

P& ~ ( w )  5 ct for  any k . (4.14) 
wenk 

However this relation is not reversible. 
Proof. The characteristic (i) is self-explanatory from Eq. (4.10). The characteristic (ii) is 
derived from fk(w)  = m a ~ { A , _ ~ ( 7 r ) , g ~ ( ~ ) }  2 & - l ( ~ ) .  If Rk = 0, gk(r )  5 f k - l ( ~ )  from Eq. 
(4.11) and we have the characteristic (iii). We can verify (iv) as follows. If the conditon 
(4.13) holds, from Eq.(4.11), 

g'l(7-r) =p1K v r ( w )  -c1 <p1K -c1 < 0 .  
w e n 1  

Therefore f 1 (7r) = 0 for any TT from Eq. (4.10). By the mathematical induction, we can show 
= f3(7r) = --â = fra(7i") = 0 for any TT, that is, p*(k) = 0, A; = 1, - - -  ,n .  

If Eq.(4.14) does not hold for some k, we adopt the following look strategy; p(k) = 1 and 
p(l) = 0 for any l =f- k. The expected reward of this case is given by pis& LWk ^(W) - ck 
which is positive. This contradicts the optimality of f&) = 0. Therefore, the characteristic 
(v)isproved. Q.E.D. 

Now we define the space of {7r ( W )  , W E f2} by 

For any 71- 6 11, an optimal look strategy and its optimal objective value fr^} can be 
calculated. Hence, we can divide the (If21 - 1)-dimensional unit simplex 11 based on the 
difference of optimal starategies. We call each of the divided regions the optimal region and 
call the dividing of the plane the optimal strategy map. Concerning with the function fk  (71) 

and the optimal regions, we can derive the following theorem. 
Theorem 3 The function fk(^) is convex for IT E II and each optimal region is the 
polyhedral convex set. 
Proof. Let 711, 712 E II and 0 < A < 1. The former fact can be proved by making use of 
the linearity of the function Rf^p, w) for TT. 

f t ( A r i  + (1 - A)^) = max fl^_k+l(p, ~ 7 1 - 1  + (1 - A)%) 

= A f k ( ~ 1 )  + (l - AVk(712) . 
Let us prove the latter fact. Assume that two path selection probabilities 711 and 71-2 are 
elements of the optimal region & and the optimal look strategy of the region is p*. Then 
the following inequatlity is valid for 0 A 1 by using the above transformation. 

f k  (Am + (1 - \)m) 5 A max G_k+l (p, m )  + (1 - A) m.x (p, m) 
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Therefore, an optimal look strategy for the combined probability A r l  + (1 - A)7r2 can be (p* 

too and An-1 + (1 - A)7r2 E II which means the convexity of IT. 
Since any optimal region is the convex set and any optimal look strategy becomes the 

bang-bang control, in other words, the number of optimal strategies is finite and 2* at 
most, the plane II is divided by a finite number of optimal regions. jr(7r) is given by 
finding one of (p maximizing EU} 7r(w ) W )  from a finite set of the bang-bang control 
strategies. Let IIi and l& be two optimal regions and (p:, be optimal strategies for 
IIi, IIz, respectively. Since the boundary between two optimal regions 111, H a  is given 

U ~ ( w ) B ~ ( ( p ~  W) = ~r(w)RT((pz, W ) ,  it is apparent that the boundary becomes a 
hyperplane. Now we complete the proof of the latter fact of this theorem. Q.E.D. 

5. Numerical Examples 
In this section, we take some simple examples and analyze the dependency of optimal strate- 
gies on the system parameters. As illustrated in Fig.1, we consider the 3-cells search space, 
which is indicated by the axis of ordinate and the 3-terms time space which is indicated by 
the axis of abscissa. A target has 3 paths of option, fl. = {l, 2,3}, and a searcher is given a 
search path indicated by a broken line in the figure. Therefore, parameters {w(A)} are set 
as follows. 

Path 1: ~ ( 3 )  = 1, w(2) = 1, w(1) = 0 ,  
Path 2: w(3) = 1, w(2) = 1, w(1) = 1, 
Path 3: w(3) = 0, w(2) = 1, w(l) = 0. 

Other system parameters are specified as follows: 
= V (constant) , ck = c (constant) . 

For simplicity, we denote each probability of target's selecting paths 1, 2, 3 by 7ri17r2,  7r3 

instead of 7r(l), 7r (2), ~ ( 3 )  and {7r1, 7r2, 7r3} by n. We also denote the look strategy at each 
term of 3,2,1 by if31 p 2 ,  p1 instead of p(3), (p(2), 4 1 )  and {ips, Ps, ifi} by v. 

Cel l 1 

Cel l 2 

Cell 3 

: T a r g e t  Paths 
0- - -0 :Searcher1 S Path 

Fig.1 Search space and target paths. 
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5.1 Sensitivity of target path selecting probability 
As a basic example, we take V = 6, c = l, p2 = 112 and estimate the recursive equation 
(4.10) for k = 1,2,3. Consequently, the optimal solution is classified in four cases. 

(i) Region A: If 7r2 < 112 -7rl and 7r2 < 113, p* = {0,1,0} and fain) = 2. 

(ii) Region B: If v2 2 112 - 7rl , 7r2 > 1 - 47r1 and 7r2 < 112 - 1/47~1 , p* = {l, 1, O} and 
f3(7r) = l + 2(7r1+ 7r2). 

(iii) Region C: If > 113 , m < 1 - 471-1 and 7r2 < 2/3 - 3127~1 , p* = {O, 1,1} and 
f3 (4 = 312 (1 + 7r2) - 

(iv) Region D: If 7r2 2 112 - l/47r1 and 7r2 > 213 - 3/27r1 , p* = {l, 1, l} and f3(7r) = 
91471-1 + 37r2 + 112. 

By Fig.2-a and -b, we illustrate the optimal strategy map and the optimal value function 
f3(7r) on the TTI - Q plane. 

Fig.2-a Optimal strategy regions. Fig.2-b Optimal value of the objective function. 

We can explain the change of the optimal strategy corresponding to the target path 
selecting probability 71-1, 7r2 and 7r3 = 1 - 71-1 - 7r2. 
(1) The search path mainly covers target paths 1 and 2. Therefore, the optimal value 

function f^n} becomes larger in the case of large 7 + 7r2 than small 71-1 + 7r2. Especially 
the search path is coincident with the target path 2, by which larger 7r2 is most 
favorable for the searcher. These facts are shown in Fig.2-b. 

(2) Concerning with the optimal strategy map, the following tendency is seen in Fig.2-a. 
The shape of all the regions is the polytope as stated in Theorem 3 .  

(i) Term 2 at which all target paths gather is most valuable for the search. All 
optimal strategies have p?> = 1. 

(ii) Region A: In the case that q and 7r2 are small, which means large m, only term 
2 is to be looked at since the searcher comes across target path 3 only then. The 
optimal strategy is ip* = {O, 1, O}. 

(iii) Region B: In the case of 7rl = 1 and small m, term 3 is also valuable by the 
rendezevous of the searcher and target path 1, as well as term 2. The optimal 
strategy is p* = {l, 1,0}- 
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(iv) Region C: In the case of small 71-1 and adequate 7r2, it would be the good strakegy 
for the searcher to execute the looking at term 1 only if non-detection occurs at 
term 2. The optimal strategy is p* = {O, 1, l}. 

(v) Region D: In the case of large the searcher must look all the time since the 
searcher can always cover target path 2. 

5.2 Sensitivity of detectability 
In the previous basic example, the searcher does not move to other cells except cell 2 and 
so only the detectability of cell 2, p2, has effect on the search. We solved the problem with 
larger detectability p2 = 9/10 and other paramters remaining V = 6, c = 1. The optimal 
strategy map is given by Table 1 and Fig.3-a. Figure 3-b presents the optimal values. 

Table 1. Optimal strakegies 

Fig.3-a Optimal strategy regions. Fig.3-b Optimal value of the objective function. 

Regions 
A 
B 
C 
D 

In this case, the searcher can expect the high detection probability at term 2 when all 
the taget paths gather. Because of that, the looking at term 3 is more wasteful than term 
2 and the searcher may wait until term 2 and look then. The optimal region with p; = 0, 
especially region C, has larger area than other regions. By the reason that the most expected 
reward may be obtained at term 2 with the high detection probability, all the strategies do 
not make so difference in terms of the optimal reward as seen in Fig.3-b. 
5.3 Sensitivity of target value 
The optimal strategy map in the case of smaller constant value V = 3 and the same 
parameters c =- 1, p2 = 112 as the basic exa,mple is given by Table 2 and Fig.4. The lower 
target value makes the looking at almost all terms be less attractive and the optimal strategy 
be p* = { O , 1 ,  O} almost all everywhere on the map. The search at term 2 yet remains to be 

Conditions 
71-2 < 5/27, 7 ~ 2  5 25/36 - 7rl 

7 ~ 2  > 25/36 - 71-1, 7r2 > l - 8/5ir1, 71-2 < 25/36 - 518~1  
7r2 > 5/27, 7 ~ 2  5 1 - 8/57r1, 77-2 < 250/261 - 85/587~1 

77-2 > 25/36 - 518x1, 71-2 > 250/261 - 8 5 1 5 8 ~  

Optimal strategies 

ip*= {07 1,0} 
p* = {l, 1, O} 
@ X {O, 1, 1) 
(f z {l, l 1  1) 
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efficient because of the convergence of all the target paths. However, if the value becomes 
equal to or less than 2, the region of the non-looking strategy p* = {O, 0, O} occupies the 
map because the condition (4.13) of Theorem 2 is satisfied. 

Table 2. Optimal strategies 

Fig.4-a Optimal strategy regions. 

5.4 Sensitivity of cost 

Fig.4-b Optimal value of the objective function. 

With respect to the sensitivity of cost c in the basic example, we can appro~ima~tely guess 
its effect on the optimal strategy map because it will work reversely comparing with target 
value V. 

Here, let us take another example, which is presented by Fig.5. A target is assumed to 
select path 1 with probability ~ ~ ( 1 )  = 213 and path 2 with probability ~ ~ ( 2 )  = 113. The 
target paths set parameters {w(k}} as follows. 

Path 1: w(3) = 0 ,  w(2) = 1, w(1)  = 1, 
Path 2: w(3) = 1, w(2) = 1, w(1) = 0. 

The target value is constant V = 4 anywhere and at any time. The detectability of cell 1 
and 2 is p1 = p2 = 112. The search cost is assumed to depend only on the search cell and is 
given by c2 = Ca, cl = 03 = c&. By the dynamic programming procedure (4.10), we obtain 
the optimal strategy map on the ca - cb plane as follows, which is visualized by Fig.6. 

(i) Region A: If Ca 2 and cb 2 413, p* = {o, 0, O} and fs{vo) = 0. 

(ii) Region B: If 2ca - 8/3 2 cb, 4/3 > cb 2 415, p* = {O, 0, l} and fs(7~o) = 413 - CÃˆ 

(iii) Region C: If 3ca/4 - 112 2 ft, 415 > ft, and 2ca - 1215 2 C Ã ˆ  p* = {l, 0, l} and 
f3(7TO) = 2-  llCb/6. 

(iv) Region D: If 2 2 Ca and cb 2 413, p* = {0,1,0} and /3(~o) = 2 -Ca. 
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(v) Region E: If 2ca - 8 / 3  < cb, 3ca/4 - 112 < cb and CÃ 2 2ca/ l l  + 4/11 ,  if' = {O, 1,1}  
and f3(7ro) = 8/3 - Ca - 1 ~ ~ 1 2 .  

(vi) Region F: If 2ca - 1215 < cb and < 2ca / l l  + 4/11,  p* = { l ,  1 , 1 }  and f 3 ( v ~ )  = 

C e l l  1 

Cel l 2 

: Target  Paths 
0--0 :  Searcher' S Path 

Fig.5 Search space and target paths. 

Fig.6 Optimal strategies on the cost plane. 

We can explain the allocation of the regions. 
If ca is large, the looking in cell 1 are expensive and must not be executed, that is, 
^=- 0.  

(i) Region A: In the case of large cb, the looking in cell 2 is not favorable too and the 
optimal strategy becomes p* = { O ,  0 ,  O} . The boundaries Ca = 2 and = 4 / 3  of 
this region give the boundaries of the necessary condition (4.14) of Theorem 2 
for the non-look strategy. 

(ii) Region B: In the case of adequate cb, the searching for the target on path 1 
becomes a little attractive bacause of its higher path probability and must be 
done at term 1, p* = {O, 0 ,  l}. 
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(iii) Region C: In the case of small c&, pakh 2 also becomes hopeful for the positive 
reward, if* = {l, 0, l}. 

a If co is small, the search in cell 1 at term 2 is desirable, that is, & = 1. 

(iv) Region D: I11 the case of la,rge c&, the optimal strategy must be p* = {o, 1, O} 
by the same reason as (i). 

(v) Region E: In the case of adequake c&, the optima,! strategy must be if* = {o, 1, l} 
by the same reason as (ii). 

(vi) Region F: In the case of small c&, the optimal strategy must be if* = {l,  1, l} 
by the same reason as (iii). 

6. Conclusions 
In this paper, we deal with a kind of the path constrained search problem where a searcher 
is given his path in advance and determines an optimal randomized look strategy in order 
to maximize the expected reward. This problem is a little ha,rd more than it looks and 
NP-complete, which is proved in this paper. For an optimaJ solution, we propose a dynamic 
programming method by which some cha,racteristics of the optimal solution are elucidated: 
for example, the conditions of the non-looking strategy, the convexity of the optimal value 
function and so on. Furthermore, we can analyze the sensitivity of system parameters 
included in the problem while the values of parameters are not specified and remain being 
variables, by which we can classify the parameter spa-ce into some regions according to the 
optimal strategy. 
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