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Abstract In this paper we show three methods for solving optimization problems of expected value of 
multiplicative functions with negative values; multi-stage stochastic decision tree, Markov bidecision process 
and invariant imbedding approach. 

1. Introduction 
Since Bellman and Zadeh [3], a large amounts of efforts has been devoted to the study of 
stochastic optimization of minimum criterion in the field of "Decision-making in a fuzzy 
environment" (Esogbue and Bellman [5], Kacprzyk [l l] and others). Recently Iwamoto and 
Fujit a [g] have solved the optimal value function through invariant imbedding. Iwamoto, 
Tsurusaki and Fujita [l01 give a detailed structure of optimal policy. Further, the regular 
dynamic programming is extended to a two-way programming under the name of bidecision 
process [7] or bynamic programming [6]. 

In this paper, we are concerned wit h stochastic maximization problems of multiplicative 
function with negative returns. We raise the question whether there exists an optimal policy 
for the stochastic maximum problem or not. Further, if it exists, we focus our attention on 
the question whether the optimal policy is Markov or not. 

Stochastic optimization of multiplicative function has been studied under the restriction 
that return is nonnegative. In this paper we remove the nonnegativity. The multiplicative 
function with negative returns applies to a class of sequential decision processes in which the 
tot a1 reliability of an information system is accumulateled through the degree of st age-wise 
reliabilities taking both positive and negative values. The negativity means unreliabilty 
(or incredibility) and the positivity does reliability (or truth). We are concerned wit h 
two extreme behaviors of the system under uncertainty. One is a maximizing behavior. 
The other is a minimizing behavior. This leads to both maximum problem and minimum 
problem for such a multiplicative criterion function. We show three methods - bidecision 
process approach, invariant imbedding approach, and multi-st age stochastic decision tree 
approach - yield the common optimal solution. Section 2 discusses stochastic maximization 
of multiplicative function with nonnegative returns. The op tirnization problem with negative 
returns are discussed in Sections 3, 4 and 5. Section 3 solves it through bidecision process. 
Section 4 solves it through invariant imbedding. Section 5 solves an example through multi- 
stage stochastic decision tree approach. 

Throughout the paper the following data is given : 

N > 2 is an integer; the total number of stages 
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X = {sl, 5 2 ,  . . . , sp} is a finite state space 

U = {al, 0 2 , .  . . , ak} is a finite action space 

rn : X X U -+ R is an n-th reward function (0 <, n <, N - 1) 
G : X -+ R is a terminal reward function 

p is a Markov transition law 

: p(ylx, U) ^ 0 ^(X, U, y) E X X U X X, y p(y\x, U) = l ^(X, U )  H X X U 
YEX 

y p(-\x, U) denotes that next state y conditioned on state X and action U 

appears with probability p(y \X,  U). 

2. Nonnegative Returns 
In this sect ion we consider the stochas tic maximization of multiplicative function as fol- 

lows : 

Maximize E [  ro(xo,~o)ri (xi, UI)  . ^-l (XN-1, U N - ~ ) ~ G ( x N )  ] 
subject to (i) xn+l wp(-1xn,un) (2.1) 

(ii) U n â ‚  n = 0 , 1 ,  . . . ,  N - 1 .  

We treat the case for multiplicative process with nonnegative returns. Thus, we assume the 
nonnegativity of reward functions : 

2.1. General policies 
In this subsection we consider the original problem (2.1) with the set of all general policies. 

We call this problem general problem. With any general policy a- = {on, . . . , over the 
( N  - n)-stage process starting on n-th stage and terminating at the last stage, we associate 
the expected value : 

We define the family of the corresponding general subproblems as follows : 

Then, we have the recursive formula for the general subproblems : 
Theorem 2.1 

Vn(x) = ~!Sl \ rn(x ,U)  UE U vn+l(Y)P(Y\X, U)] X ? X, 0 <n < N - l .  (2.5) 
Y^ 
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2.2. Markov policies 
In this subsection we restrict the problem (2.1) to the set of all Markov policies. We call 

this problem Markov problem. 
Any Markov policy IT = {IT^, . . . , ITN_~} over the (N -n)-stage process is associated with 

its expected value Jn (xn; IT) defined by (2.3). For the corresponding Markov subproblems : 

we have the recursive formula : 
Theorem 2.2 

Theorem 2.3 (i) A Markov policy yields the optimal value function VO(-) for the general 
problem. That is, there exists an  optimal Markov policy TT* for the general problem (2.1) : 

J O ( X ~ ;  IT*) = vO(xo) for all xo G X. 

In  fact, letting ir*{x) be a maximizer of (2.5) (or  (2.7)) for each X E X, 0 < n < N - 1, we 
have the optimal Markov policy IT* = {IT:,. . . , 
(ii) The optimal value functions for the Markov subproblems (2.6) are equal to  the optimal 
value functions for the general problems (2.4) : 

3. Bidecision Processes 
In this section we take away the nonnegativity assumption (2.2) for return functions. We 

rather assume that it takes at  least a negative value : 

rn(x,u) < 0 for some 0 < n < N - 1, ( x , ~ )  G X X U. (3.1) 

Then, in general, neither recursive formula (2.5) nor (2.7) holds. 
Nevertheless, we have the following positive result : 

Theorem 3.1 A general policy yields the optimal value function VO(-) for the general prob- 
lem. That is, there exists an optimal general policy a* for the general problem (2.1) : 

J O ( X ~ ;  IT*) = vO(xo) for all xo E X .  

The proofs of Theorem 3.1 and 3.3 are postponed to Subsection 3.3. 
Theorem 3.2 In general, Markov policy does not yield the optimal value function VO(-) for 
the general problem. That is, there exists a stochastic decision process with multiplicative 
function such that for any Markov policy TT 

v0(x0) > JÂ¡(xo IT) for some xo G X .  

Proof The proof will be completed by illustrating an example in 55. D 

In the following we show two alternatives for the negative case, i.e., under assumption 
(3.1). One is a bidecision approach. The other is an invariant imbedding approach. 
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3.1. General policies 
In this subsection we consider the problem (2.1) wit h the set of all general policies. We call 

this problem general problem. With any general policy a = {gn, . . . , aNWl} , we associate 
the corresponding expected value : 

We define both the family of m a x i m u m  subproblems and the family of minimum subproblems 
as follows : 

W"(XN) = ~ G ( X N )  XN E X 
Wn(xn) = min Jn(xn; c) X" G X, 0 < n < N - 1. 

a (3.3) 

For each n (0 < n < N - l), X G X we divide the control space U into two disjoint 
subsets : 

Then, we have the bicursive formula (system of two recursive formulae) for the both 
subproblems : 
Theorem 3.3 (Bicursive Formula [7, pp.685 ,l. 13-22]) 

VN (X) = W (X) = rG(x) x e x  

Let TT = . . . , TTN-l} be a Markov policy for maximum problem and a = {(TO, . . . , 
oN-l} be a Markov policy for minimum problem, respectively. Then, the ordered pair (TT, a) 
is called a strategy for both m a x i m u m  and minimum problem (2.1). 

Given any strategy (TT, a), we regenerate two policies, upper policy and lower policy, 
together with corresponding two stochastic processes. The upper policy p = {po, . . . , pNd1}, 
which governs the upper process Y = {Yo, . . . , YN} on the state space 
X = {sl, ~ 2 , .  . . , s P }  ([7, pp.6831) , is defined as follows : 
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{ al(xl) for ro(xo,uo) 
< 0 

//l(xo, xi) := 
TTl(x1) { > o  

and so on, where 
u i=pi (x0  , . . .  ,xi) i = 0 , 1 ,  . . . ,  n-1 .  

On the other hand, the replacement of triplet {p, o, 7r} by {v, TT, a} in the regeneration 
process above yields the lower policy v = {i/o, . . . , vN-1}, which in turn governs the lower 
process Z = {Zo, . . . , ZN} on the state space X ([7, pp.6841). 

Now let us return to the problem of selecting an optimal policy for maximum prob- 
l e m  (2.1) with the set of all general policies. We have obtained the bicursive formula 
(3.5) ,(3.6) for the general subproblems. Let for each n(O <: n $ N - l), X E X v x x )  
and en(x) be a maximizer for (3.5) and a minimizer for (3.6), respectively. Then, we have 
a pair of policies TT* = {T:, . . . , TT&_~} and (T = {(TO, . . . , 6'N-l}. Thus, the pair (TT*, 8) is a 
strategy for problem (2.1). The preceding discussion for strategy (TT*, 6') regenerates both 
upper policy p* = {p:, . . . , p&-l} and lower policy 5 = {Co, . . . , fiNP1}. From the con- 
struction (3.7)- (3.10) together with bicursive formula (3.5), (3.6), we see that upper policy 
p* = {p& . . . , A_ l} is optimal policy for maximum problem (2.1). Thus, the general policy 
p* yields the optimal value function VO(-} in (3.2) for the general maximum problem. 

Similarly, the lower policy 5 = {Co, . . . , fiNF1} is optimal for minimum problem (2.1). 
The general policy 5 yields the optimal value function WO(-) in (3.3) for the general minimum 
problem. 

3.2. Markov policies 
Further, restricting the problem (2.1) to the set of all Markov policies, we have the 

Markov problem. However, the corresponding optimal value functions for Markov subprob- 
lems {vn ( S ) ,  wn (-) } do not satisfy the bicursive formula (3.5), (3.6). Further, the optimal 
value functions are not identical to the optimal value functions {Vn(-), Wn (-)} in (3.2) ,(3.3), 
respectively. In general, we have inequalities : 

3.3. Proofs of Theorems 3.1 and 3.3 
In this subsection we prove Theorems 3.1 and 3.3. It suffices to prove these two facts for 

the two-stage process, because those for the N-stage process are proved in a similar way. 
We note that for xn E X 
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where ul = ol(xl) in (3.12),(3.13) and uo = oo(xo), ul = ol(xo,xl) in (3.14),(3.15), respec- 
t ively. 

Thus, the equalit ies 

are trivial. Therefore we must show the equalities 

Since (3.17) is proved in a similar way, we prove (3.16) in the following. 
Let us choose an optimal (Markov) policy TT; for the one-stage maximum, process : 

where u1 = T T ~ X ~ )  and choose an optimal (Markov) policy (Tl for the one-stage minimum 
process : 

where ul = <Tl (xi). From the definition (3.14), we can for each x0 G X choose an optimal 
(not necessarily Markov) policy 3 = {h, h} for the two-stage process : 
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where 
U0 = 6-o(xo), U1 = 6-1(~0,-~1). 

From (3.20), (3.21) and (3.22) we have for UQ C U satisfying ro (xo, uo) > 0 

On the other hand, we have for u0 G U satisfying rO(xO, u0) < 0 

Thus, taking maximum over UQ E U(0, XQ , +) and once more over UQ E U (0, XQ, -) , we get 

On the other hand, let for any xo E X, U* = u*(xo) E U be a maximize! of the right 
hand side of (3.23)(i.e., maximum of the two maxima). This defines a Markov decision 
function 

71-̂  : X + U ^ (Xo) = U* (xo). 

First let us assume 

Then, we have 
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From (3.18) and (3.19), we get 

and 

respectively. Thus, we have from (3.24), (3.25) 

Combining (3.24) and (3.27), we obtain 

Second let assume 

Similarly, for this case, we obtain through (3.26) 

Max ro(x0, "0) X W' (xi)p(xi 1x0, "0) 5 vO(xo). 
uoâ‚¬U(O,xol x1 â ‚  

From (3.28), (3.29), we have 
r l 

Both equations (3.23) and (3.30) imply the desired equality (3.16). This completes the proof 
of Theorem 3.3. 

Furthermore, from the Markov policy TT* = {TT:, TT:} and the Markov decision function 
(TI we construct a general policy p* == {l^\, iA\ through (3.7) ,(3.8). Then, the equality in 
(3.30) implies that the optimal value function VO(-) is attained by this general policy p* : 

Thus, Theorem 3.1 is proved. This completes the proofs. 
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4. Irnbedded Processes 
In this section we imbed the problem (2.1) into a family of t e rm ina l  processes o n  one- 

d imens iona l l y  augmented state space. We note that the return, which may take negative 
values, is mult iplicat ively accumulating . 

Let us return to the original stochastic maximization problem (2.1) with multiplicative 
function. Without loss of generality, we may assume that 

-1 < rn(x,u) < 1 (x,u) G X X U, 0 < n  < N - 1 

- i < r G ( x ) < i  X G X .  (4.1) 

Under the condition (4.1) we imbed the problem (2.1) into the family of parameterized 
problems as follows : 

Maximize E[\oro{xo, uo)ri(xi, ui) - - ~ N - I ( x N - ~ ,  U N - I ) ~ G ( X N )  1 
subject to (1) Xn+l m p(.1xn, un) (4.2) 

(ii) U n G U  n = 0 , 1 ,  . . . ,  N - l  

where the parameter ranges over \o [-l, l]. 
4.1. General policies 

First we consider the imbedded problem (4.2) with the set of all general policies, called 
general problem. Here we note that any general policy : 

= {CO; al, - , UN-I} 

consists of the following decision functions 

- 1 7 1 1 )  -. U 

-l ,  l]) X X (X X [-l, l]) ̂  U. 

Thus, any general policy a = {ffni . . . ,  ON-^} over the ( N  - n)-stage process yields its 
expected value : 

where the alternating sequence of action and augmented state 

{un, ( ~ n + l ,  An+l) 7 un+l, (~n+27 ^1+2) 5 m - U ~ - l ,  (XN 7 } 

is stochastically generated through the policy a and the starting state (Xn, An) as follows : 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



T. Fujita & K. Tsurusaki 

However, note that the sequence of the latter halves of the states {An+l,  An+2, . . . , AN } 
behaves deterministically. 

We define the family of the corresponding general subproblems : 

vN (XN , AN) = \ ~ ~ G ( x N )  X N G X ,  - l < A ~ < l  

Vn(xn, An) Max Kn(xn, \nÂ 0) 
0" 

xn â X, -1 < An < 1, 0 < n < N - 1. (4.5) 

Then, the general problem (4.2) is identical to (4.5) with n = 0. We have the recursive 
formula for the general subproblems : 
Theorem 4.1 

4.2. Markov policies 
Second we consider the Markov problem. That is, we restrict the imbedded problem (4.2) 

to the set of all Markov policies. Here Markov policy 

consists in turn of two-variable decision functions : 

Note that any Markov policy TT = {un, . . . , TTN-l} over the ( N  - n)-stage process yields 
its expected value Kn(xn, An ; 7r) through (4.3). The alternating sequence of action and 
augmented state 

is similarly generated through the policy TT and the state (xn, An) as in (4.4), where 

Of course, the sequence of the latter halves of the states {An+l, An+2, . . . , AN } behaves 
determinist ically. 

We define the family of the corresponding Markov subproblems : 

v"(xN~ h) = -WG(XN) XN ex, -1 < A N  < l 
vn (xn, An) = Max Kn (xn, An ; TT) xn E X, -1 < An < 1, 0 < n < N - 1. (4.7) 

7T 

Note that the Markov problem (4.2) is also (4.7) with n = 0. Then, we have the recursive 
formula for the Markov subproblems : 
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Theorem 4.2 

Theorem 4.3 (i) A Markov policy yields the optimal value function VO(-) for the general 
problem. That is, there exists an  optimal Markov policy TT* for the general problem (4.2) : 

v0(x0, Ao) = K' (xo, A. ; v*) for all (xo) Ao) E X X [- 1,1]. 

I n  fact, letting <(X, A) be a maximizer of (4.8) (or  (4.6)) for each (X, A)  E X X [-l, l], 0 5 
n < N - 1, we have the optimal Markov policy TT* = {TT;, . . . , TT&-~}. 

(ii) The optimal value functions for the Markov subproblems (4.7) are equal to  the optimal 
value functions for the general problems (4.5) : 

4.3. Proofs of Theorems 4.1 - 4.3 
In this subsection we prove only Theorems 4.1 and 4.3(i) because Theorems 4.2 and 4.3(ii) 

are the direct consequences of Theorems 4.1 and 4.3(i). We prove both theorems for the 
two-stage process, because the theorems for the N-st age process are proved similarly. 

We note that for (xn7 An) E X X [- 1, l] 

where ul = 01 (xi, AI) in (4.9) and UQ = o-~(xo, Ao), AI = ̂ 0^0(^0) uo) , UI = 01 (xo, Ao, X15 AI)  
in (4.10), respectively. 

Thus, the equality 

is trivial. We prove 

V' (Q, Ao) = Max E 
^ x^X 

Let us choose an optimal (Markov) policy o-\ for the one-stage process : 

From the definition (4.5), we can for each (x0, Ao) ? X X [- 1, l] choose an optimal (not 
necessarily Markov) policy 6 = {g0, for the two-stage process : 
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Thus, we see that 

From (4.13) together with (4.14) and (4.15) we have 

Consequently, we have 

Thus, taking maximum over U ? U, we get 

On the other hand, let for any (xo, Ao) E X X [-l, l], U* = U* (xo, Ao) C U be a maximizer 
of the right hand side of (4.16). This defines a Markov decision function 

Then, we have 

From (4.12), we get 
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= vO(xo,\a). (4.20) 

Both equations (4.16) and (4.20) imply the desired equality (4.11). This completes the proof 
of Theorem 4.1. 

Furthermore, the equalities in (4.20) imply that the optimal value function VO(-) is 
attained by the Markov policy 2 = {TT;, a; } : 

This completes the proof of Theorem 4.3(i). 
4.4. Proof of Theorem 3.1 

Now, in this subsection, let us prove Theorem 3.1 by use of the result of Theorem 4.3. 
First we note that any Markov policy for the imbedded problem (4.2) TT = {-no, . . . , TTN-~}  

together with a specified value of the parameter A. induces the general policy for the problem 
(2.1) 0- = {gO, . . . , ON-l} as follows : 

~N-l(x07 X17 - 7 XN-l) := ̂ N - ~ ( x N - ~ - ,  ̂ ~ - l )  

where AN-1 = ̂ - 2 r ~ - 2 ( ~ ~ - 2 ,  uN-2)7 UN-2 = W-2 (XN-2, h - 2 )  

AN-2 A N - ~ ~ N - ~ ( x N - ~ , u N - ~ )  UN-3 = T ^ N - ~ ( x N - ~ ,  AJV-~) 7 

. .. ^l = >ore ( ~ 0 ,  ~ 0 )  7 U. = d x o  7 '0) 

Furthermore we see that both the Markov policy TT with a specified value \Q = 1 and the 
resulting general policy cr yield the same value function : 
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Second we note that Theorem 4.3 assures the existence of an optimal Markov policy for 
the imbedded problem (4.2) TT* which together with the value A. = 1 induces the corre- 
sponding general policy for the problem (2.1) g*, as is shown by (4.21). Thus, we get 

On the other hand, for any general policy for the problem (2.1) o- = {go, . . . , ON-1) we 
define a general policy for the imbedded problem (4.2) 6 = {(TO, . . . , h-l} by 

~ o ~ ^ o , x I ; ^ ~ ; . - - ~ x ~ ^ ~ )  'Â¥ o ~ ( x o ~ x ~ ~ - - - ; x ~ )  
on ( X  X [-1,1]) X (X X [-1,1]) X X (X X [-1,1]), 0 < n  < N - 1 .  

Then, we have 
K0(x0, 1 ;  (T) = J O ( X ~ ;  g) x0 E X. (4.23) 

Therefore, the optimality of the policy TT* implies 

Combining (4.22), (4.24) and (4.23), we get for any general policy cr 

Thus, the policy g* is optimal for the general problem (2.1). This completes the proof of 
Theorem 3.1. 

5. Example 
In this section we illustrate a multiplicative decision process with negative returns which 

does not admit any optimal Markov policy. As was mentioned in $3, the illustration also 
proves Theorem 3.2. We show that bidecision process approach, invariant imbedding ap- 
proach, and multi-stage stochastic decision tree approach yield a common pair of optimal 
value functions and optimal policy. 

Let us consider the two-stage, three-state and two-action problem as follows : 

Maximize E[  ro (uo)rl (u1) rG (x2) ] 
subject to (i) xn+l p( - \Xn, un) n = 0 , l  

(ii) UQ G U, ul E U 

where the data is given as follows (see also [3, pp.152, 1.19-22, pp.B154],[9]) : 

5.1. Bidecision processes 
We note that Theorem 3.3 for Markov problem reduces to 
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The computation proceeds as follows. First 

v 2 ( s l )  = 0.3 V 2 ( s 2 )  = 1.0 V 2 ( s 3 )  = -0.8 

w 2 ( s 1 )  = 0.3 w 2 ( s 2 )  = 1.0 w 2 ( s 3 )  = -0.8. 

Second we have 

v l ( s l )  = [(-1.0) X {0.3 X 0.8 + 1.0 X 0.1 + (-0.8) X 0.1}] 

~ [ 0 . 6  X {0.3 X 0.1 + 1.0 X 0.9 + (-0.8) X 0.0}] 

= (-0.26) V 0.558 = 0.558 v\(s1) = a2. 

Similarly, we have 

~ ' ( ~ ~ ) = = - 0 . 2 6  & l ( ~ l ) = a i  

v 1 ( s 2 )  = 0.62 TT; ( s2 )  = a1 w1(s2)=O.156 f f l ( s2 )=a2  

V' (S,) = -0.26 7 ~ ;  ( s3)  = a1 w 1 ( s 3 )  = -0.414 6"1(s3) = 02. 

Third we have 

v 0 ( s 1 )  = 0.6138 r n ( s l )  = a2 W O ( s l )  = -0.33768 f fO(sl)  a1 

v 0 ( s 2 )  = 0.4824 TT: ( s 2 )  = a2 W 0 ( s 2 )  = -0.2338 f fO(s2)  = a2 

VO (s3)  = 0.16366 rn (s3)  = a1 W 0 ( s 3 )  = -0.3986 f f0(s3) = " 2 .  

Thus, we have obtained the Markov strategy (TT* , 6") as follows : 

TT* = {TT;,TT;} 6" = {6"o,o'i} 

where 

Now let us construct 
Markov strategy (TT*,  6"). 

i~n(s1) = as, ni(s2) = a2, ro(s3) = a1 

6 0  ( s l )  = al ,  $ 4 ~ 2 )  = a2 7 60 ( ~ 3 )  = a2 

r ; ( s l )  = 0 2 ,  wi(s2) = 0 1 ,  rI(s3)  = a1 

( s l )  = d l ,  0-1 ( ~ 2 )  = " 2 ,  0-1 ( ~ 3 )  = 0 2 .  

an optimal policy p* = {G, p\\ for maximum problem from the 
The upper  policy p* = {p& p:} is defined as follows : 

< 0 
{ > o  where u0 = T T ~ X ~ ) .  

First we have 
( s l )  = a2 ( I : ( s ~ )  = "2 7 &(ss) = 

Second we have the following components of p* (xo ,  x i ) .  
S i n c e , r o ( ~ ( s l ) )  = ro(a2) = 1.0 > 0,  we have 
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4 ( s l ,  s l )  = 7r; ( s l )  = a2 4 ( s l ,  s2) = 7rXs2) = a1 4 (a,  33) = 4 ( S S )  = al. 

Similarly ro(71-0 (52)) = r0(a2) = 1.0 > 0 yields 

Further ro(7rn (4) = ro(al )  = -0.7 < 0 does 

5.2. Imbedded processes 
In this subsection we solve the following parametric recursive formula : 

The computation proceeds as follows : 

Thus, we have optimal value function v1 and optimal second decision function TT* : 
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For -1 < A. < 0,  we have 

v0(s1; A0) = [Ao X (-0.7) X 0.558 X 0.8 + A. X (-0.7) X 0.62 X 0.1 

+Ao X (-0.7) X (-0.26) X 0.11 V [Ao X 1.0 X (-0.26) X 0.1 

+Ao X 1.0 X 0.156 X 0.9 + A. X 1.0 X (-0.414) X 0.01 
= [Ao X (-0.33768)] V [Ao X 0.1441 = \a X (-0.33768), a s l ;  \y) = a l ,  

and for 0 < A. < 1, we have 

V ~ ( S ~ ;  Ao) = [Ao X (-0.7) X (-0.26) X 0.8 + \a X (-0.7) X 0.156 X 0.1 

+Ao X (-0.7) X (-0.414) X 0.11 V [Ao X 1.0 X 0.558 X 0.1 

+Ao X 1.0 X 0.62 X 0.9 + A. X 1.0 X (-0.26) X 0.01 
= [Ao X 0.163661 V [Ao X 0.61381 = A. X 0.6138, ? T ~ ( S ~ ;  Ao) = 0 2 .  

Similar computation yields 

Of course, these optimal values obtained by solving parametric recursive formula are iden- 
tical to those by bicursive formula: 

Thus, we have optimal value function vO and optimal first decision function I;: 

At the same time, we have obtained the Markov policy I* = { X ;  $} for the imbedded 
process, where 

u0(s1; Ao), x ; ( s ~ ;  Ao) 
v0(s2;Ao) ,  7rt(s2;Ao) 
v0(s3;  h), 10 (s3; Ao) 

6 ( 5 1 ;  Ao) = { 2 ( ~ 2 ;  ~ 0 )  = a2 (ss ; ~ 0 )  = { :: for { -1 < A o  < 0 
O < A o < l  

-1 < An < 0 O < A o < l  
A. X (-0.33768), a1 A. X 0.6138, a2 
A o x  (-0.2338), a2 Aox0.4824, a2 
A. X (-O.3986), 02 A. X 0.16366, a1 

{ :; { :: t ; ( s 3 ; h ) = { : ;  for { - l < A o < O  
7^ (s1; A l )  = 7  ̂(s2; A l )  = 0 < \ Q < 1 .  

Hence, substituting A. = 1, we have 

Now let us from the Markov policy I* construct an optimal general policy 7 = {To, T l } .  
The first decision function is 

The second decision function 

reduces in our data to 
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This yields 

Thus, we have through invariant imbedding obtained an optimal policy 7, which is not 
Markov but general. The optimal policy 7 is completely coincident with p* obtained through 
the bidecision process in $5.2. 
5.3. Stochastic decision tree 

In this subsection we solve directly the problem (5.1) by generating two-stage stochastic 
decision trees and enumerating all the possible histories together with the related expected 
values. 

We remark that the size yields Z3 = 8 first decision functions 00 = 

2' = 512 second decision functions 

As a total, there are 8 X 512 = 4096 general policies a = {co, cl} for the problem (5.1). 
First, the decision tree method in Figure 2 shows V O ( s l )  = 0.6138. Similarly, the method 

history ter. I path I mult. I times 

Figure 1 : One-stage stochastic decision tree from sl, sz and 

total 

-0.26 

0.558 

0.62 

0.156 

-0.26 

-0.414 

' 3  
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calculates the maximum expected values V0 (s2), V0(s3) on Figures 3,4, respectively. Then, 
we have 

v0(s1) = 0.6138, v0(s2) = 0.4824, v0(s3) = 0.16366. 

The calculation yields, at the same time, the optimal policy a* = {a('j(xo), 4 (xO, xl)} : 

history ter. 1 path 

0.3 0.64 
1.0 0.08 

-0.8 0.08 
0.3 0.08 
1.0 0.72 

-0.8 0.0 
0.3 0.0 
1.0 0.01 

-0.8 0.09 
0.3 0.08 
1.0 0.01 

-0.8 0.01 
0.3 0.08 
1.0 0.01 

-0.8 0.01 
0.3 0.01 
1.0 0.0 

-0.8 0.09 
0.3 0.08 
1.0 0.01 

-0.8 0.01 
0.3 0.01 
1.0 0.09 

-0.8 0.0 
0.3 0.0 
1.0 0.09 

-0.8 0.81 
0.3 0.72 
1.0 0.09 

-0.8 0.09 
0.3 0.0 
1.0 0.0 

-0.8 0.0 
0.3 0.0 
1.0 0.0 

-0.8 0.0 

mult . 
0.21 
0.7 

-0.56 
-0.126 
-0.42 
0.336 

times 

0.1344 
0.056 

-0.0448 
-0.01008 
-0.3024 
0.0 

sub. 

0.1456 

-0.31248 

total 

Figure 2 : Two-stage stochastic decision tree from sl 
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Note that 

0; ^l, "l) # ~ ' ( 3 3 ,  ~ 1 ) .  

Thus, the optimal policy <r* is not Markov (but general). 
In Figure 1 (resp. Figures 2, 3 and 4) we use the following notations : 

history = xl r l  (ul) / ul p(xi \ xi, W)  ~2 

(resp. history = x0 ro(uo) / U O  p(x1 I 20,uo) xi ri(u1) / u i  p(x2 I X i , ~ i )  ~ 2 )  

ter. = terminal value = rc (x2) 

history 
- 
ter. - 
0.3 
l .C 

-0.6 - 
0.3 
l .c 

-0.8 - 
0.3 
1 .o 

-0.8 - 
0.3 
1 .o 

-0.8 - 
0.3 
1 .o 

-0.8 - 
0.3 
1 .o 

-0.8 - 
0.3 
1 .o 

-0.8 
0.3 
1 .o 

-0.8 
0 -3 
1 .o 

-0.8 - 
0.3 
1 .o 

-0.8 
0.3 
1 .o 
-0.8 - 
0.3 
1 .o 
-0.8 - 

mult times 

0.0 
0.0 

-0.0 
-0.0 
-0.0 
0.0 
0.0 
0.007 

-0.0504 
-0.01008 
-0.0042 
0.00336 
0.1512 
0.063 

-0.0504 
-0.01134 
-0.0 
0.27216 

-0.192 
-0.08 
0.064 
0.0144 
0.432 

-0.0 
-0.0 
-0.01 
0.072 
0.0144 
0.006 

-0.0048 
-0.024 
-0.01 
0.008 
0.0018 
0.0 

-0.0432 

sub. total 

0.2499 

0.4824 

Figure 3 : Two-stage stochastic decision tree from 59 
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path = path probability = p(xl \ xo, uo)p(x2 1 XI, U\\ 
mult. = multiplication of the two = rl (ul) X rG (x2) 

(resp. mult. = multiplication of the three = ro(uo) x rl (ul) X rG(x2)) 

times = path X mult. 

sub. = subtotal expected value 

total = total expected value. 

history ter. - 
0.3 
1 .o 

-0.8 
0.3 
1 .o 

-0.8 
0.3 
1 .o 

-0.8 - 
0.3 
1 .o 

-0.8 

path 

0.64 
0.08 
0.08 
0.08 
0.72 
0.0 
0.0 
0.01 
0.09 
0.08 
0.01 
0.01 
0.08 
0.01 
0.01 
0.01 
0.0 
0.09 
0.08 
0.01 
0.01 
0.01 
0.09 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.72 
0.09 
0.09 
0.09 
0.0 
0.81 

times 

0.1344 
0.056 

-0.0448 
-0.01008 
-0.3024 
0.0 
0.0 
0.007 

-0.0504 
-0.01008 
-0.0042 
0.00336 
0.0168 
0.007 

-0.0056 
-0.00126 
-0.0 
0.03024 

-0.024 
-0.01 
0.008 
0.0018 
0.054 

-0.0 
-0.0 
-0.0 
0.0 
0.0 
0.0 

-0.0 
-0.216 
-0.09 
0.072 
0.0162 
0.0 

-0.3888 

sub. total 

0.16366 

Figure 4 : Two-stage stochastic decision tree from 53 
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Table 1 : all expected value vectors i/Â (TT) ,  where TT = {rO, T T ~ }  is Markov 

Further, the italic face means probability, and the bold number denotes a selection of 
maximum of up expected value or down. 

Second, Table 1 is an arrangement of Figures 2, 3 and 4 by selecting all (8 X 8 = 64) 
Markov policies TT = {rO, T T ~ } .  The table lists up the corresponding expected value vectors 
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0.6138 
We see that the optimal value vector Vs = ( L'!::; ) becomes VO = ( 0.4824 ) . Thus, 

V0(s3) 0.16366 
Table 1 shows that for any Markov policy TT 

V' (xo) > J' (xo; TT) for some xo E {si, S,, ss}, 

which completes the proof of Theorem 3.2. 
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