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Abstract I t  is said that paired comparison is the essence of AHP. But if there are N alternatives and 
M criteria in a standard AHP, we must compare pairs for each criterion and wC2 pairs for the set 
of criteria, and the total number of them becomes up tp  C-) X M + C2. So for rather large M and N 
it takes much cost and time to get paired comparison data. But even if we have not the whole set Sn of 
nC2 pairs (let such a case be called incomplete information case), we can estimate the weights based on 
comparison data in an appropriate subset of Sn by Harker method or Two-stage method [4, 51. We can 
use LLS (logarithmic least square) method in AHP analysis, by which we can analyze AHP for incomplete 
information case. So we can reduce the number of paired comparisons by using incomplete information 
case. The problem is how to  select pairs to be compared in Sn, that is, a design to get data. We propose 
the strongly regular (SR) design based on strongly regular graphs, and by numerical simulation show that 
the errors of the estimations by SR designs are smaller than any random designs for almost all cases. Since 
SR graphs are rather difficult to be constructed, we generalize them to quasi-strongly regular (quasi-SR) 
graphs, and propose quasi-SR design based on quasi-SR graphs. By simulation we show that quasi-SR 
designs also give the same good results as the SR designs. 

1. Introduction 
AHP is an useful method to evaluate alternatives in many decision problems. But if 

there are N alternatives and M criteria in a standard AHP, we must compare pairs for 
each criterion and NCo pairs for the set of criteria, and the total number of them becomes 
up to NC'2 X M + MC'2. So for rather large M and N it takes much cost and time to get 
paired comparison data. 

Generally the eigenvalue method of AHP on n objects estimates weights WI,  wz, - , Wn 

of objects 1 ,2 ,  - , n based on nC2 paired comparisons. But even if we have not the whole 
set Sn of nC2 pairs (let such a case be called incomplete information case), we can estimate 
W I ,  w2, , wn based on comparison data in an appropriate subset of Sn by Harker method 
or Two-stage method [4, 51. We can use LLS (logarithmic least square) method in AHP 
analysis, by which we can analyze AHP for incomplete information case. So we can reduce 
the number of paired comparisons by using incomplete information case. 

The problem is how to select pairs to be compared in Sn, that is, a design to get data. 
More precisely, for given n, what is the best subset of size m to be selected in Sni to estimate 
WI,  w2, - . , wn based on paired comparisons in the subset. 

Taking objects and pairs of objects as points and edges respectively, we have the graph 
corresponding to paired comparison. A complete graph corresponds to the whole set S n ,  

and a graph with m edges corresponds to a subset of size m in Sn. Thus our problem is to 
find what is the best of graphs with m edges to estimate weights of objects. 

We propose the strongly regular (SR) design based on strongly regular graphs, and by 
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numerical simulation show that the errors of the estimations by SR designs are smaller than 
any random designs for almost all cases in Section 5. 

Since SR graph is rather difficult to be constructed, we generalize it to quasi-strongly 
regular (quasi-SR) graph, and propose quasi-SR design based on quasi-SR graphs. By 
simulation we show that quasi-SR designs also give the same good results as the SR designs. 

There are several methods to construct strongly regular (SR) or quasi-SR graphs. We 
survey these methods and give new methods based on our own idea and list up them for 
practical usage in Section 6. For every combination of n and m, we can not always construct 
SR or quasi-SR graph with n points and m edges. For the case with missing n and m, we 
can select near n' and m' in the list. 

2. Strongly  Regular  (SR)  G r a p h  
Here we treat graphs with undirected edges and without loops nor parallel edges. A 

complete graph is a graph in which every pair of points is adjacent, and a null graph is a 
graph without any edges (with only points). 

We define the adjacent matrix N = (A^,) of graph G as, 

N.. = 1 if points i and j are adjacent, 
IJ 0 otherwise. 

As G has no loops, diagonal elements of N are zero, that is Nii = 0, and G is undirected so 
N is symmetric. Every element of N of a complete graph is unity except diagonal elements. 
The adjacent matrix of a null graph is a zero matrix. The complement of graph G is the 
graph whose adjacent matrix is N = J - I - N, where N is the adjacent matrix of G ,  
and J is the all 1 matrix and I is the identity matrix. We call a graph G regular if every 
point of G has the same degree (or valency) d. The adjacent matrix N of a regular graph 
has the following property, 

N J =  J N = d J .  (2-1) 

If a regular graph G (except complete or null graphs) satisfies the following properties then 
we call G strongly regular (SR). 
1. For any pair of adjacent points p and q, the number of points adjacent to both p and q 

is X. 
2. For any pair of not adjacent points p and q the number of points adjacent to both p and 

q is p.  
If an SR graph has n points and the degree is d then we call it (n, d, A ,  p )  SR graph. It 

is clear that if G is (n, d, A ,  p )  SR graph, its complement G is (n, d, A ,  /i) SR graph where 

In Fig. 1 we show examples of regular graphs and SR graphs. In (a),(b),(c) of Fig. 1, an SR 
graph G and its complement G are shown. Graphs of (d), (e), (f) and (g) are regular but 
not SR. 

If N is an adjacent matrix of an SR graph, then it has the following property [2], 

It is because, for i # j ,  (N2),, is the number of paths of length 2 from i to j ,  so if i and 
j are adjacent (TV;, = 1 and ( J  - I - N)ij = 0) it must be equal to A ,  if i and j are not 
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Fig. 1: SR and quasi-SR graphs. 

adjacent (Nii = 0 and ( J  - I - N)ij = 1 )  it must be equal to p,  and for i = j ,  ( N - ) ~  is 
the number of points adjacent to i. 

Formulas (2-1) and (2-3) show that the algebra generated by I, J ,  N is linear. In other 
words any results of adding and multiplying among I, J and N are always represented by 
linear combination of 1, J and N by (2-3). Indeed, an SR graph could be defined as a 
regular graph whose adjacent matrix satisfies (2-3). Conversely if I, J and N satisfying 
(2-1) generate a linear algebra on the integral domain, then the graph with adjacent matrix 
N is SR [2]. 
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3. Analysis of LLS by SR Design 
It is well known [6] that estimates of weights of objects by LLS (Logarithmic Least 

Square) method are very near to that of eigenvalue method in AHP. 
If a~ is the value of paired comparison of object i to j, then we assume the following 

model, 
W i . . 

a" 1:1 = - - e ~ 7  Z , J  = l , - - - , n ,  (i < j ) ,  
wj 

(3-1) 

where e~ > 0 is error and aii = 1. Taking logarithm of (3-1) we have 

By minimizing the sum of square of logeG7s we have LLS estimate Gi of W;. We assume 
that log e ~ ' s  are independent random variables and the expectation of log e~ is zero and its 
variance is a2. 

Since wl , - m , wn are arbitrary by a constant multiple, we can assume w1 w2 - - - wn = 1. 
Let 

- 
wi = logw;, i = 1 , - - . , n  (3-3) 

then we have 

Here let us take e as the base. 

Example 1 LLS analysis by SR graph G(10,3,0,1). 
Using the SR graph G in Fig. 2, we have   aired comparison data a , ~  corresponding to  

edge (i,  j) of G. 

Fig. 2: The graph G(10,3,0, l). 

Setting Zij = log a,, we have a data table like Table 1 and the normal equation like 
Table 2 where y2s are linear combination of aij7s. Solving the normal equation, we have 

A 

LLS estimate G; and 6; = eG (i = 1, - - ,  n).  
The precision of estimate Gi is measured by its variance V(%;) and this is equal to the 

value of a2 multiplied by i-th diagonal element of inverse matrix M 1  of coefficient matrix 
M of the normal equation. That is 

where M-' = (M"). 
Of course, values of M'"S are independent of yi7s (or aij7s), so we can measure goodness 

of a design by M" whatever the values of data aG9s are. 
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Table 1: Data table. 

Table 2: Normal equation. 

Next we analyze the properties of the coefficient matrix M of normal equation (M 
is often called information matrix) for SR design, and represent M and M - ~  by linear 
combinations of I, J and N. 

Theorem 1 Let M be the information matrix of LLS method for SR design by an SR 
graph G(n, d, A, p), then 

Proof: [Formula (3-6)]; It is well known in the theory of least square methods that (i, j) 
element M,, of information matrix M is equal to the inner product of i-th and j-th column 
vector in data table like Table 1. So Mii is equal to d + 1, independent of i, because every 
point has degree d, so there are d + 1 elements with & l  in every column in data table (all 
elements of the last row in data table is always 1 because of (3-4)). The (i, i) element of the 
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right hand side of (3-6) is just equal to d + 1. 
Next if points i and j are not adjacent then the inner product of columns i and j is just 

1 (or the rows except the last row, columns 2 and j do not have common non-zero values), 
and (2,j) element in the right hand side of (3-6) is just 1 (because Nij = 0 asnd .lij = 1). 
If points i and j are adjacent then columns z and j have 1 and -1 respectively in the row 
corresponding to edge (i, j) and both have 1 in the last row, so their inner product is zero 
while ( d I  + J - T-1 - - = J v - TV- 1-1 - = 1 - 1 = 0. So the left hand side of (3-6) completely 
coincides with the right hand side. 

[Formula (3-7)]; As we mentioned above, I, J and N generate linear algebra A and M 
is in A by (3-G), so if M has its inverse M 1  then M '  must be also in A. So we can 
write 

M-' = d + p ~ + + .  

From (2-1) and (2-3) we have 

So we have the following equations of a,  3 and 7 ,  

and solving these we have formula (3-7). 

From (3-7) we have the estimates 6; of W; = log W; by the formula 

where [yl, y2, - - , ynIt is the right hand side vector of the normal equation. By this formula 
we can calculate not only 6; very simply, but also 6; almost analytically ( 2  = 1, - , n). 
The formula (3-7) directly shows 

So we have the following theorem: 

Theorem 2 The variance of LLS estimate G; b y  SR  design is given b y  

So this is independent of i (i = 1, - - , n).  

Simplifying (3-9) by the formula (4-1) in the next section we have 

The precision of estimate g; is measured by its variances (3-10) or its standard deviation, 
the square root of (3-10). 
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4. Quasi-SR Design 
Through several calculations concernig the eigenvalues of the adjacent matrix N of an 

SR graph (n, d, A, p),  we have the following relation [2], 

and the property such that the value of 

must be integer [2]. 
So the value of the parameters n, d, A and p incur fairly strong constraints and can take 

only sparse values. So we generalize the concept of SR graph to r-th order regular graph 
whose adjacent matrix N with I and J generates r-th order (of N )  algebra, that is, N'"'" 
can be represented by the linear combination of I, N, , Nr and J. First order regular 
graph is SR graph, and let us call r-th order regular graph as quasi-SR graph for r 2 2. Of 
course any regular graphs are r-th order for some value of r. But when we say quasi-SR, 
the value of r must be smaller than n. 

Example 2 The graph in (f) of Fig. 1 is a 2-nd order regular, and its adjacent matrix Ng 
has the following relation, 

N i = 3 1 + N g - 3 y + 6 ~ .  (4-3) 

We do not ask the graph theoretic meaning of each coefficient in (4-3) any more. Of course 
generally if a graph is 2-nd order regular then its complement is also 2-nd order regular. - 
For this case Ng = J - I - Ng has the relation, 

The value of V($,) on LLS for the design by N, is I$(Gi) = 0.2343802 (independent of i). 

Fig. 3: The graph G(8,4,0, 4). 

- 
For the design by Ng^ the number of objects n = 8 and the number of pairs compared 

m = 16. We have SR design with the same number n = 8 and m = 16, by the graph 
shown in Fig. 3 (which is called complete bipartite graph). This design gives the value of 

= 0.2187502 (independent of i )  by Theorem 2, which is smaller than &(Gi). 
For quasi-SR design, information matrix for LLS always has the formula 

so we can represent M 1  and as in like Theorem 1 and Theorem 2. But the formulas 
are rather complex, so if necessary we can calculate the numerical values of M 1  and 
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5. Numerical Experiment (or Simulation) 
We will show the goodness of SR or quasi-SR design by simulation. In order to do so, we 

compare the results of SR or quasi-SR designs with random design with the same value of n 
(the number of objects or points of the graph) and m (the number of pairs to be compared 
or edges of the graph), on two methods, LLS and the eigenvalue method (EV); where a 
random design with n and m is designed by a connected graph whose m edges are selected 
randomly, 

As shown in Section 3, for LLS we can evaluate the goodness of a design by the variances 
of estimates of weights wi, , W^, but generally the value of ~ ( 6 ; )  depends on i ,  so we 
take 

A 

Vmax = max{V(G;) I i = 1, - - , n} (5-1) 

where each v(wi) /02  can be calculated by the diagonal elements of M 1  the inverse of the 
information matrix M. So we can evaluate the goodness based on only the design itself 
without considering data a,,. Further the values of V(%;) for SR or quasi-SR designs of 
various parameters are shown in Table 7. Note that the value of V(%,-) for SR or quasi-SR 
is independent of i, so Vmax = V(%;). So we have only to construct random designs with 
various values of n and m and calculate Vmax by (5-1) and compare it with one of SR or 
quasi-SR designs. In our simulation we select the values of n and m shown in Table 3. 

But on the EV method the goodness of the designs generally depends on the values of 
comparison data a;,. The principle of our simulation to test the goodness of a design graph 
G is the following; For a given set of values of wl, . , wn satisfying wl + . + Wn = 1, 
repeat the next process. 

(a) Take a random, number e;, for each (i, j )  E G and calculate 

where log e,-j has normal distribution with Â£'[lo e;,] = 0, V[log ei,] = 02. 
(b) Construct incomplete comparison matrix A = (aÃ£Â with several missing elements, and 

calculte the maximal eigenvalue A and an eigenvector (Gl, 122,. - , GyJ corresponding 
to A, by Harker method or Two-stage method [3, 4, 51. 

(c) Calculate G; = log W,-, 6,- = log Gj (i  = 1, - , n)  and 

,-. 

Repeat (a) ,  (b),  (c) many times (500 times in our simulation) and calculate the mean of Vmax 

denoted by Vmax. We take Vmax as the criterion of goodness of G. The value of (6,- - 

represents the square error of estimate 6; of ui; (i = 1, - , n),  and the maximum of square 
errors maxi(%,- - g ; )2  1 i = 1, , n} is the usual criterion of estimate. For example the 

A 

minimax principle is to minimize the maximal error. So Vmax. is a reasonable criterion. 
Next problem is how to select the values of w1, - , wn. T.  L. Saaty [l] suggests that a;, 

takes one of integers 1,2,  . a , 9  and their inverses. So the maximal ratio among wl, - - - , wn 
must be 9. So it is typical pattern that wl, - - , wn take values of 1,2, - - - ,9 .  But in the 
simulation extrema cases are also important, and it is general tendency that the large value 
of n causes the wider range of values. 

Considering these we select the values of W ^ ,  , wn as follows. For n = 10,12,15, W; 

takes one of {l, 2,3,4,5} in the narrow type and one of {l, 2,3,4,5,6,7,8,9} in the wide 
type (i = l , . . .  , n ) .  For n = 18,20, W,- takes one of {1,2,3,4,5,6,7,8,9} in the narrow type 
and one of {l, 2 , .  ,15} in the wide type. 
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Table 3: Results of simulation. 
LLS HTM TSM 
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The results of simulations are summarized in Table 3, where n is the number of objects 
(points of the graph) and m is the number of pairs compared (edges of the graph). 

The symbols of graphs used for the designs, T(4), I'(2,5), - + , etc. are explained in Section 
6. The estimation methods are LLS, HM (Harker eigenvector method [3,4]) and TSM (Two- 
stage eigenvector method [5]). 
/̂VSR standard deviations of estimates of weights for SR or quasi-SR designs, calculated 

in Table 3 for LLS and calculated by (5-2) for eigenvector methods. 
fl: standard deviations of estimates of weights for selected random designs, calculated by 

(5-1) for LLS and by (5-2) for eigenvector methods. 
The upper part of each cell corresponds to the narrow type of weights and the lower part 
to the wide type. 

The results show that SR or quasi-SR designs absolutely exceed random designs, that is 
without any exceptions that SR or quasi-SR designs give better results than random designs. 
Further the results show a specific feature as a byproduct; comparing HM with TSM, in 
almost cases TSM gives better results than HM, which is not main object of our research 
but is important to be mentioned. 

6. Construction of SR and Quasi-SR Graphs 
There are various methods to construct SR and quasi-SR graphs. Here we summarize 

them to cases (i) (vii); in cases (ii), (iii), (vi) and (vii) we construct SR graphs and these 
are mainly based on [Z], in cases (i), (iv) and (v) we construct SR or quasi-SR graphs and 
these are based on our own idea. 

(i) Cyclic graph: 
Let {0,1, - - , n - l} be the set of points, then let us call a set of edges 

a cycle with initial edge (0, A;), where A; = 1,2, . , (n-l)/2 for odd n and A; = 1,2, - , n/2 
for even n,  but CnI2 = { ( i ,  2 + A; )  1 i  = 0,1, - - - , n/2 - l} for even n is called a half cycle. 
The set of edges of a complete graph is represented by 

Cl U C; U U C(n_l)12 for odd n and 
Cl U C2 U U Cn12 for even n. 

Examples of n = 6 and n, = 7 are shown in Table 4. 

Table 4: Cyclic representation of edges. 

Let us call a graph (except a complete graph) composed of a set of cycles a cyclic graph. 
Thus for n = 6, Cl, C2,C3, Cl U C2, Cl U C3, and C2 U C3 are all cyclic graphs. The 
adjacent matrix N of a cyclic graph is represented by the sum of basic cyclic matrices 
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Table 5: Multiplication table. 

P, P',. - . ,  p n -  l (Pn = I), where PiJ, (i, j )  element of P, is defined as; = 1 (i = 

1, - , n - l), Pn1 = 1 and other elements are equal to 0. For example, adjacent matrices 
of Cl and Cl U C2 are P + and P + P-' + p2 + respectively. Let 

then N is always represented by sum of Q s .  And the results of adding and multiplying 
among Q s  are always represented by sum of Qis and I .  The followings are multiplication 
tables of Q's for n = 8 and 9. (Note that for even n, we have = pnnl2  7 SO 

Q = 2pnl2 .  Instead of Q,,/:,, we use which is rewritten by Pn12.) Of course the n/2 
table is symmetric so the under half is neglected). . 

Thus N ,  N ~ ,  - - are calculated by such multiplication tables, which is useful to get in- 
formation about the albebra generated by N, N ~ ,  - - -. In Table 7, Q,, Q iQj  and QiPk 
stand for the cyclic graphs C;, C' U C, and C, U Ck respectively. 

(ii) Triangular graph T(v) :  
Let V be a set of size v (2 3). Taking two elements a and b of V ,  and let the (unordered) 
pair p = { a ,  b} be a point of the graph. Two points p and q are adjacent if and only if p 
and q have a common element. Triangular graph T(v) is always SR satisfying 

n = d = 2(u - 2), A = U - 2, p = 4, 
m = nd/2 = u(u - l )(u - 2)/2 (the number of edges). 

The complement T(u)  of T ( u )  is also SR, and its parameters are determined by (2-2). 
(iii) Lattice graph L2(v): 

Let V be a set of size U (> 2). The set of points of a lattice graph is V2 (= V X V), and 
two points p = (al,  a2) and q = (b l ,  62) are adjacent if and only if p and q have a common 
coordinate (al = bl or a2 = 62). L2(u) is always SR and satisfies 

The complement L2(u) is also SR and its parameters are determined by (2-2). 
(iv) First kind k-dimensional lattice graph Lk(u); (k > 3, U > 2, l = 1,2, - , k): 
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Let V be a set of size v (2 2). The set of points is V^, and two points p = (a1, 0 2 ,  , ak)  
and q = (bl, 62, - - , bk) are adjacent if and only if Hamming distance of p and q is equal 
to I, i.e., 

l{? 6 {i = l, - - , k} 1 a, # bJ1 = I. 

Lk(v)/ is generally qua,si-SR, where parameters are 

n = v', d = kCi(v - l)', m = nd/2. 

The complement Lk(v); of Lk(v); is a quasi-SR graph of the same order as Lk(v)[. 
(v) Second kind k-dimensional lattice graph Lk(v)<; - (k 2 3, v 2 2, l = 2, - - - , k - l): 

Lk(v)ci - is the same as Lk(v)[ except that the definition of the adjacency is "Hamming 
distance of two points is equal to or smaller than I". This is also quasi-SR, whose 
parameters are 

I 

n = v*, d = Y,tC,(v - l)', m = nd/2. 
i=l 

The graph Lk(v)<; is isomorphic to Lk(~ )<k- l .  
(vi) Complete ~ - ~ o L t s  k-partite graph r ( k ,  v): 

r ( k ,  v) is the complement of disjoint union of k complete v-points graphs, that is, com- 
plete v-points k-partite graph. This is always a SR graph whose parameters are 

n = kv, d = ( k  - l ) v ,  A = (k - 2)v, p = (k - l ) v ,  m = nd/2 = k(k - 2)v2/2. 

An example for k = 2, v = 4 is shown in Fig. 3. The graph T(k, v) is always separated 
graph. 

vi i )  Paley graph P(q): 
Let q be a power of a prime number (q = pr, where p is prime) and q = 1 (mod 4). Let 
GF(q) be Galois field of size q (r-th order extension field of GF(p)). The points of the 
graph are elements of GF(q),  and two points a and b are adjacent if and only if a - b is 
a square in GF(q). This is always SR whose parameters are 

The graph P(q) is isomorphic to P(q). 

Fig. 4: The graph P(3'). 

Example of P(32) is shown in Fig. 4, where G F 0 2 )  is the extension field of GF(3) = 
{O, 1,2} mod 3, and 9 is a primitive element of O2 = 1 + 9, and 0Â° 02, O4 and P are squares 
in GF(3'). 
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By the above mentioned methods we construct various SR or quasi-SR graphs and list 
up them in Table 7, where n is the number of points (the number with parenthesis is 
nC2 = n(n - 1)/2), m is the number of edges, and d is the degree (or valency), and A and 
{L are parameters for SR graph. The column denoted by "order" shows the order of the 
adjacent matrix N. The symbols in the column "construction method" are explained in the 
above, but we abbreviate Q i + Q j  + . - - + Q k ,  Q i + Q j + . - - + P k  as QiQj Qk, QiQt - - P k  
respectively. The column denoted by "i/V(K?i)/(7" shows the standard deviation of the 
estimate of weight for LLS, which is independent of data and only on the design. 

The last column "i/Vo,)/i7 of complete" is the standard deviation of the estimate of 
weight for complete information case, which takes all of nC2 possible pairs. The adjacent 
matrix of complete design is N = J - I and d = n - 1. By (3-6) 

and M '  = l / n I .  So JVlw.)/i7 = l/&, where V(wi) is the abbreviation of v(Gi). 
In Table 8 we list up several adjacent matrices of the smaller n. This table is intended 

for practical usage for actual designs for AHP. But this has also important theoretical 
information. Considering that \-/CT is a criterion for goodness of designs we can say 
that SR is always the best design for the same values of n and m in the table, as conjectured 
in Section 1. 

Further Table 6 shows that even an incomplete case, if the design is good, has sufficient 
precision comparable with complete information case. Here we pick up SR designs with 
about half value of m of complete design and compare the precision. 

Table 6: Comparing precision. 
n 1 8  10 12 14 16 18 20 

Table 7: Some of SR graphs or quasi-SR graph. 

ratio of VVW) 

ratio of m 

d A p order 7 

0.354 0.316 0.289 0.267 0.250 0.236 0.229 - - - - - - - 
0.467 0.424 0.391 0.364 0.342 0.324 0.315 

2 8 - 45 - 66 - 9 1 - 120 153 171 

16 2 5 36 49 64 8 1 9 5 

method 1 1 of complete 
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order construction 
method 

\ / V 1 0  
of complete 

0.333333 

0.3162277 

0.301511 

0.288675 

0.277350 

0.267261 
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m / g  

of complete 
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order 

8 
7 
7 
6 
7 
7 
5 
5 
1 
6 
7 
6 
1 
7 
8 
4 
1 
1 
1 

'VW/a 
of complete 

0.235702 
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Table 8: Adjacent matrixes of some cyclic graph. 
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7. Conclusion 
(a) We proposed SR designs to select pairs in the whole set of nCi pairs in AHP, and showed 

by simulation that  SR design is the best of all other designs with the same value of n 
(the number of objects) and m (the number of pairs). (See Section 2, Table 3, Section 
54  

(b) An SR design corresponds to  an SR graph. From the analytical properties of the adjacent 
matrix N of an SR graph, we give the theoretical formula to  calculate the variance of 
estimates of weights for an SR design. (See Section 3.) 

(c) The SR graph exists for only very sparse values of n and m. So we extend the SR graphs 
to the quasi-DR graphs which exist for wider values of n and m. It is shown by simulation 
that the quasi-SR design also gives good results. (See Section 4, Table 3, Section 5.) 

(d) We surveyed the construction methods of SR graphs and further give new construction 
methods of SR and quasi-SR graphs (see Section 6). By these methods we construct SR 
and quasi-SR graphs and list up them with necessary parameters for n = 5 20 and 
various values of m. (See Table 7.) 

) Table 7 gives not only practical designs for AHP, but also various theoretical information. 
This shows that  SR or quasi-SR design with rather smaller values of m gives fairly good 
results compared with complete designs, and SR design is always better than quasi-SR 
with the same values of rn and n. (See Table 7.) 
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