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Abstract It is said that paired comparison is the essence of AHP. But if there are N alternatives and
M criteria in a standard AHP, we must compare 34C, pairs for each criterion and yC, pairs for the set
of criteria, and the total number of them becomes up tp yCy x M + 3 Cs. So for rather large M and N
it takes much cost and time to get paired comparison data. But even if we have not the whole set S, of
nC2 pairs (let such a case be called incomplete information case), we can estimate the weights based on
comparison data in an appropriate subset of S, by Harker method or Two-stage method [4, 5]. We can
use LLS (logarithmic least square) method in AHP analysis, by which we can analyze AHP for incomplete
information case. So we can reduce the number of paired comparisons by using incomplete information
case. The problem is how to select pairs to be compared in Sy, that is, a design to get data. We propose
the strongly regular (SR) design based on strongly regular graphs, and by numerical simulation show that
the errors of the estimations by SR designs are smaller than any random designs for almost all cases. Since
SR graphs are rather difficult to be constructed, we generalize them to quasi-strongly regular (quasi-SR)
graphs, and propose quasi-SR design based on quasi-SR graphs. By simulation we show that quasi-SR.
designs also give the same good results as the SR designs.

1. Introduction

AHP is an useful method to evaluate alternatives in many decision problems. But if
there are IV alternatives and M criteria in a standard AHP, we must compare 3,C; pairs for
each criterion and yC pairs for the set of criteria, and the total number of them becomes
up to yCy X M 4+ 3Cy. So for rather large M and N it takes much cost and time to get
paired comparison data.

Generally the eigenvalue method of AHP on n objects estimates weights wy, wa, - - -, wy,
of objects 1,2,+--,n, based on ,C; paired comparisons. But even if we have not the whole
set S, of ,C; pairs (let such a case be called incomplete information case), we can estimate
Wy, Wy, ** -, W, based on comparison data in an appropriate subset of S, by Harker method
or Two-stage method [4, 5]. We can use LLS (logarithmic least square) method in AHP
analysis, by which we can analyze AHP for incomplete information case. So we can reduce
the number of paired comparisons by using incomplete information case.

The problem is how to select pairs to be compared in S,, that is, a design to get data.
More precisely, for given n, what is the best subset of size m to be selected in S, to estimate
wy, Wa, - -+, W, based on paired comparisons in the subset.

Taking objects and pairs of objects as points and edges respectively, we have the graph
corresponding to paired comparison. A complete graph corresponds to the whole set S,
and a graph with m edges corresponds to a subset of size m in S,. Thus our problem is to
find what is the best of graphs with m edges to estimate weights of objects.

We propose the strongly regular (SR) design based on strongly regular graphs, and by
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numerical simulation show that the errors of the estimations by SR designs are smaller than
any random designs for almost all cases in Section 5.

Since SR graph is rather difficult to be constructed, we generalize it to quasi-strongly
regular (quasi-SR) graph, and propose quasi-SR design based on quasi-SR graphs. By
simulation we show that quasi-SR designs also give the same good results as the SR designs.

There are several methods to construct strongly regular (SR) or quasi-SR graphs. We
survey these methods and give new methods based on our own idea and list up them for
practical usage in Section 6. For every combination of n and m, we can not always construct
SR or quasi-SR graph with n points and m edges. For the case with missing n and m, we
can select near n’ and m’ in the list.

2. Strongly Regular (SR) Graph

Here we treat graphs with undirected edges and without loops nor parallel edges. A
complete graph is a graph in which every pair of points is adjacent, and a null graph is a
graph without any edges (with only points).

We define the adjacent matrix IN = (1V;;) of graph G as,

N = 1 if points 7 and 7 are adjacent,
10 otherwise.

As G has no loops, diagonal elements of IN are zero, that is N; = 0, and G is undirected so
N is symmetric. Every element of IN of a complete graph is unity except diagonal elements.
The adjacent matrix of a null graph is a zero matrix. The complement of graph G is the
- graph whose adjacent matrix is N = J — I — N, where NN is the adjacent matrix of G,
and J is the all 1 matrix and I is the identity matrix. We call a graph G regular if every
point of G has the same degree (or valency) d. The adjacent matrix IV of a regular graph

has the following property,
NJ =JN =dJ. (2-1)

If a regular graph G (except complete or null graphs) satisfies the following properties then
we call G strongly regular (SR).
1. For any pair of adjacent points p and ¢, the number of points adjacent to both p and ¢
is A.
2. For any pair of not adjacent points p and g the number of points adjacent to both p and
qis p.
If an SR graph has n points and the degree is d then we call it (n, d, A, ) SR graph. It
is clear that if G is (n,d, A, ) SR graph, its complement G is (n,d, A,) SR graph where

d=n—-1—-d, X=n—-2d4+p—2, T=n—2d+A\ (2-2)

In Fig. 1 we show examples of regular graphs and SR graphs. In (a),(b),(c) of Fig. 1, an SR
graph G and its complement G are shown. Graphs of (d), (e), (f) and (g) are regular but
not SR.

If N is an adjacent matrix of an SR graph, then it has the following property [2],

N?=dI + AN+ u(J —I—N). (2-3)

It is because, for ¢ # 7, (N?);; is the number of paths of length 2 from ¢ to 7, so if z and
j are adjacent (N;; = 1 and (J — I — N);; = 0) it must be equal to A, if ¢ and j are not
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How to Select Paired Comparisons in AHP 313

(a) G(520,1) G(5,2,0,1)
= G(5,2,0,1)

(b)  G(10,3,0,1)

G(10,3,0,1)
= G(10,6,3,4)

(C) G(954)172) G(9747172)

» = G(9,4,1,2)

(d)

Fig. 1: SR and quasi-SR graphs.

adjacent (N;; = 0 and (J — I — N);; = 1) it must be equal to y, and for i = 7, (IN?);; is
the number of points adjacent to s.

Formulas (2-1) and (2-3) show that the algebra generated by I,J, N is linear. In other
words any results of adding and multiplying among I,J and IN are always represented by
linear combination of I,J and N by (2-3). Indeed, an SR graph could be defined as a
regular graph whose adjacent matrix satisfies (2-3). Conversely if I,J and IN satisfying
(2-1) generate a linear algebra on the integral domain, then the graph with adjacent matrix

N is SR [2].
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314 K. Wang & I Takahashi

3. Analysis of LLS by SR Design

It is well known [6] that estimates of weights of objects by LLS (Logarithmic Least
Square) method are very near to that of eigenvalue method in AHP.

If a;; is the value of paired comparison of object i to 7, then we assume the following
model,

w; o .
]‘=~_'61‘]'7 27.7"__17"'777'7 (2<])7 (3_1)

wj

a;
where e;; > 0 is error and a; = 1. Taking logarithm of (3-1) we have
log a;; = log w; —logw]-—l-log &j, L,3=1,-"-,m, (l <]'). (3—2)

By minimizing the sum of square of loge;;’s we have LLS estimate w; of w;. We assume
that log e;;’s are independent random variables and the expectation of loge;; is zero and its
variance is 2.
Since wy,---,w, are arbitrary by a constant multiple, we can assume wyw;---w, = 1.

Let

w; =logw;, t1=1,---,n (3—3)
then we have

W) + Wy + -+ w, = 0. (3-4)
Here let us take e as the base.
Example 1  LLS analysis by SR graph G(10,3,0,1).

Using the SR graph G in Fig. 2, we have paired comparison data a;; corresponding to
edge (i,7) of G.

Fig. 2: The graph G(10,3,0,1).

Setting @;; = loga;; we have a data table like Table 1 and the normal equation like
Table 2 where y;’s are linear combination of @;;’s. Solving the normal equation, we have
LLS estimate w; and @; = €% (i = 1,---,n).

The precision of estimate ; is measured by its variance V(w;) and this is equal to the
value of ¢ multiplied by i-th diagonal element of inverse matrix M ™" of coefficient matrix
M of the normal equation. That is

V(%z) = Miioja 1=1,---,m, (3_5)
where M ™! = (M%),

Of course, values of M*’s are independent of y;’s (or a;;’s), so we can measure goodness
of a design by M* whatever the values of data a;;’s are.
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Table 1: Data table.
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Table 2: Normal equation.

Wo Wy Wa W3 W4 Ws We W7 Wg Wy
4 0 1 1 o0 0 1 1 1 1w
0 4 0 1 1 1 0 1 1 1/
1 0 4 0 1 1 1 0 1 1|y
1 1 0 4 0 1 1 1 0 1 | ys
0 1 1 0 4 1 1 1 1 0 |y
0 1 1 1 1 4 1 0 0 1]y
1 0 1 1 1 1 4 1 0 0 | ys
1 1 0o 1 1 0 1 4 1 0 |y
1 1 1 0 1 0 0 1 4 1 | ys
1 1 1 1 0 1 0 0 1 4 | yg

Next we analyze the properties of the coefficient matrix M of normal equation (M
is often called information matriz) for SR design, and represent M and M ™' by linear
combinations of I, J and IN.

Theorem 1 Let M be the information matriz of LLS method for SR design by an SR
graph G(n,d, A\, i), then

M =dI+J-N (3-6)
M = ol +3J ++yN (3-7)
d+p—A —2d+ A 1
o = /8:

dld+p—N+(u—d’ n{dd+p—N+p—dp | ddtp-N+u—d
Proof: [Formula (3-6)]; It is well known in the theory of least square methods that (7, 7)
element M;; of information matrix M is equal to the inner product of ¢-th and j-th column
vector in data table like Table 1. So M;; is equal to d + 1, independent of ¢, because every
point has degree d, so there are d + 1 elements with £1 in every column in data table (all
elements of the last row in data table is always 1 because of (3-4)). The (¢, 1) element of the
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right hand side of (3-6) is just equal to d + 1.

Next if points 7 and j are not adjacent then the inner product of columns ¢ and j is just
1 (or the rows except the last row, columns 7 and j do not have common non-zero values),
and (7, 7) element in the right hand side of (3-6) is just 1 (because N;; = 0 and J;; = 1).
If points ¢ and ;7 are adjacent then columns : and 7 have 1 and —1 respectively in the row
corresponding to edge (7,7) and both have 1 in the last row, so their inner product is zero
while (dI + J — N);; = J;; — N;;j =1 —1 = 0. So the left hand side of (3-6) completely
coincides with the right hand side.

[Formula (3-7)]; As we mentioned above, I, J and IN generate linear algebra A and M
is in A by (3-6), so if M has its inverse M ™', then M ™! must be also in A. So we can
write
'. M_lza1+,@J+7N.

From (2-1) and (2-3) we have
MM™ = (dI + J — N)(aI + 8J + vN)
= dal + (a+nB +dy)J + (—a + dy)N — yN?
= dal + (a+nB+dy)J + (—a+dy)N —y[dI + AN + u(J —I — N)]
= (da—dy +puy)I + (a+nf+dy—py)J +(—a+dy+py - Ay)N
= 1I.

So we have the following equations of a, 8 and v,
da—(d—p)y=1, a+nf+(d—p)y=0, —at(d+up—A)y=
and solving these we have formula (3-7). 0

From (3-7) we have the estimates w; of w; = log w; by the formula

@1 Y1
Wo _ At y.2 (3—8)
w, Yn
where [y1,y2, -, ys]" is the rlght hand side vector of the normal equation. By this formula
we can calculate not only w; very simply, but also w; almost analytically (i = 1,--+,n).
The formula (3-7) directly shows
~ . d+u—A)—2d+ A (n—2)d—(n—1)A+npu
. 2 et M“ e foome n( = .
V(w:)/o a+p nldld+p—AN+pu—d nldld—1)—d\+ (d+1)u]
So we have the following theorem:
Theorem 2 The variance of LLS estimate W; by SR design is given by
~ (n=2)d—(n—1)A+nu
) = . 3-9
V@) = @ =t [d+ )’ (3-9)
So this is independent of 1 (i =1,---,n).
Simplifying (3-9) by the formula (4-1) in the next section we have
~ —-1-d —1)24+d
V():l{” G )+}&. (3-10)

1 d

The precision of estimate w; is measured by its variances (3-10) or its standard deviation,
the square root of (3-10).
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4. Quasi-SR Design
Through several calculations concernig the eigenvalues of the adjacent matrix IN of an
SR graph (n,d, A, u), we have the following relation [2],

dd=X—1)=(n—-d—-1)u (4-1)
and the property such that the value of

1 (n—l)(ﬂ——/\)~2d)
—{n—-1% 4-2
2 ( VO = 1)? +4(d — p) i

must be integer [2].

So the value of the parameters n,d, A and y incur fairly strong constraints and can take
only sparse values. So we generalize the concept of SR graph to r-th order regular graph
whose adjacent matrix IN with I and J generates r-th order (of IN) algebra, that is, N"*"
can be represented by the linear combination of I, N,---, N and J. First order regular
graph is SR graph, and let us call r-th order regular graph as quasi-SR graph for r > 2. Of
course any regular graphs are r-th order for some value of r. But when we say quasi-SR,
the value of r must be smaller than n.

Example 2 The graph in (f) of Fig. 1 is a 2-nd order regular, and its adjacent matrix IV,
has the following relation,

N> =3I+N,—3N2+6J. (4-3)

We do not ask the graph theoretic meaning of each coefficient in (4-3) any more. Of course
generally if a _graph is 2-nd order regular then its complement is also 2-nd order regular.
For this case N, = J — I — N, has the relation,

N, = 4N, +6J. (4-4)
The value of V(w;) on LLS for the design by N, is V,(w;) = 0.23438¢2 (independent of 7).

Fig. 3: The graph G(8,4,0,4).

For the design by IN,, the number of objects n = 8 and the number of pairs compared
m = 16. We have SR design with the same number n = 8 and m = 16, by the graph
shown in Fig. 3 (which is called complete bipartite graph). This design gives the value of
Vsr(w;) = 0.218750? (independent of i) by Theorem 2, which is smaller than V,(w;).

For quasi-SR design, information matrix for LLS always has the formula

M =dI+J N,

so we can represent M ™" and V (w;) as in like Theorem 1 and Theorem 2. But the formulas
are rather complex, so if necessary we can calculate the numerical values of M ™" and V(w;).
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5. Numerical Experiment (or Simulation)

We will show the goodness of SR or quasi-SR design by simulation. In order to do so, we
compare the results of SR or quasi-SR. designs with random design with the same value of n
(the number of objects or points of the graph) and m (the number of pairs to be compared
or edges of the graph), on two methods, LLS and the eigenvalue method (EV); where a
random design with n and m is designed by a connected graph whose m edges are selected
randomly.

As shown in Section 3, for LLS we can evaluate the goodness of a design by the variances
of estimates of weights wy,--,w,, but generally the value of V(;) depends on i, so we
take

Vinax = max{V (@;) |i = 1,---,n} (5-1)

where each V(;)/0? can be calculated by the diagonal elements of M ™" the inverse of the
information matrix M. So we can evaluate the goodness based on only the design itself
without considering data a;;. Further the values of V(;) for SR or quasi-SR. designs of
various parameters are shown in Table 7. Note that the value of V/(;) for SR or quasi-SR
is independent of 4, so V., = V(@;). So we have only to construct random designs with
various values of n and m and calculate Vi,.x by (5-1) and compare it with one of SR or
quasi-SR designs. In our simulation we select the values of n and m shown in Table 3.

But on the EV method the goodness of the designs generally depends on the values of
comparison data a;;. The principle of our simulation to test the goodness of a design graph
G is the following; For a given set of values of wy,---,w, satisfying wy + -+ +w, = 1,
repeat the next process.

(a) Take a random number ¢;; for each (¢,7) € G and calculate
a;; = %eija aji = 1/ay,

where log e;; has normal distribution with Efloge;;] = 0, V[log e;;] = o°.

(b) Construct incomplete comparison matrix A = (a;;) with several missing elements, and

calculte the maximal eigenvalue A and an eigenvector (@;, @y, -, W,) corresponding
to A, by Harker method or Two-stage method [3, 4, 5].
(¢) Calculate @; = log w;,w; = logw; (i = 1,-++,n) and
Vinax = max{(; —w;)? [i =1,---,n}. (5-2)

Repeat (a), (b), (¢) many times (500 times in our simulation) and calculate the mean of Vinax

denoted by Vipax. We take Vipax as the criterion of goodness of G. The value of (w; — w;)?
represents the square error of estimate w; of w; (1 = 1,---,n), and the maximum of square
errors max{(@w; — @,)? | ¢ = 1,---,n} is the usual criterion of estimate. For example the

minimax principle is to minimize the maximal error. So [A/max is a reasonable criterion.

Next problem is how to select the values of wy, -+, w,. T. L. Saaty [1] suggests that a;
takes one of integers 1,2,---,9 and their inverses. So the maximal ratio among wy, -, wy
must be 9. So it is typical pattern that wy,---,w, take values of 1,2,---,9. But in the
simulation extrema cases are also important, and it is general tendency that the large value
of n causes the wider range of values.

Considering these we select the values of wy,---,w, as follows. For n = 10,12,15, w;
takes one of {1,2,3,4,5} in the narrow type and one of {1,2,3,4,5,6,7,8,9} in the wide
type (i = 1,---,n). For n = 18,20, w; takes one of {1,2,3,4,5,6,7,8,9} in the narrow type
and one of {1,2,---,15} in the wide type.
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Table 3: Results of simulation.

Graph LLS HTM TSM

n | m VVse | VVi | VVse | VVi | VVsr | VWi
10| 15 T(5) 0.5831 | 1.0218 | 0.6373 | 0.8425 | 0.5532 | 0.7126
1.0132 | 0.6375 | 0.8845 | 0.5223 | 0.5922

25 T'(2,5) 0.4243 | 0.6002 | 0.4600 | 0.5319 | 0.4182 | 0.4710
0.6091 | 0.4741 | 0.5549 | 0.4491 | 0.5201

30 T(5) 0.3905 | 0.4979 | 0.4326 | 0.4643 | 0.4029 | 0.4304
0.5091 | 0.4386 | 0.4726 | 0.4129 | 0.4384

12| 24 Q:Q; 0.5401 | 0.8575 | 0.7008 | 0.8185 | 0.5126 | 0.5936
0.8524 | 0.6996 | 0.8036 | 0.5760 | 0.6661

36 T'(2,6) 0.3909 | 0.5535 | 0.4976 | 0.5826 | 0.4561 | 0.5137
0.5542 | 0.4921 | 0.5658 | 0.4541 | 0.5007

54 I'(4,3) 0.3191 | 0.3711 | 0.3990 | 0.4034 | 0.3857 | 0.3885
0.3722 | 0.4071 | 0.4216 | 0.3925 | 0.4014

60 I'(6,2) 0.3028 | 0.3341 | 0.3774 | 0.3857 | 0.3706 | 0.3770
0.3350 | 0.3742 | 0.3753 | 0.3677 | 0.3682

15| 30 Q:Q, 0.5129 | 0.9268 | 0.6191 | 0.8444 | 0.5563 | 0.6550
0.9325 | 0.6219 | 0.8610 | 0.6134 | 0.6922

60 T(6) 0.3464 | 0.4644 | 0.4290 | 0.4669 | 0.4092 | 0.4210
0.4586 | 0.4346 | 0.4585 | 0.4238 | 0.4460

75 T'(3,5) 0.3055 | 0.3726 | 0.3745 | 0.3972 | 0.3565 | 0.3783
0.3736 | 0.3672 | 0.3912 | 0.3509 | 0.3674

90 r'(5,3) 0.2789 | 0.3152 | 0.3419 | 0.3443 | 0.3336 | 0.3357
0.3152 | 0.3423 | 0.3464 | 0.3343 | 0.3376

18| 36 Q:Q, 0.6240 | 1.0131 | 1.2034 | 1.2166 | 0.7231 | 0.8342
0.9966 | 1.2104 | 1.2598 | 0.9899 | 0.9956

54 | Q:Q2Qs | 0.4422 | 0.6631 | 0.7957 | 0.8544 | 0.6525 | 0.6979
0.6665 | 0.7900 | 0.8533 | 0.6135 | 0.6322

81 T'(2,9) 0.3239 | 0.4427 | 0.5412 | 0.5902 | 0.4904 | 0.5198
0.4414 | 0.5417 | 0.6134 | 0.4953 | 0.5735

108 T'(3,6) 0.2805 | 0.3380 | 0.4722 | 0.4943 | 0.4438 | 0.4650
0.3413 | 0.4754 | 0.4945 | 0.4467 | 0.4618

135 T'(6,3) 0.2509 | 0.2785 | 0.4128 | 0.4220 | 0.4028 | 0.4091
0.2790 | 0.4114 | 0.4147 | 0.4023 | 0.4031

144 T(9,2) 0.2430 | 0.2610 | 0.4101 | 0.4109 | 0.4054 | 0.4064
0.2610 | 0.3999 | 0.4018 | 0.3947 | 0.3963

20 | 40 Q:1Qs 0.5395 | 1.0278 | 0.7245 | 0.9768 | 0.5730 | 0.6853
1.0334 | 0.7198 | 0.9998 | 0.7078 | 0.8221

60 Q:1Q4Qs | 0.4292 | 0.6850 | 0.5879 | 0.6795 | 0.6401 | 0.6752
0.6809 | 0.5761 | 0.6750 | 0.7758 | 0.7814

80 | Q:Q3Q5Q~ | 0.3484 | 0.5138 | 0.4622 | 0.5186 | 0.4272 | 0.4668
0.5202 | 0.4556 | 0.5271 | 0.4449 | 0.5091

100 | T'(2,10) 0.3082 | 0.4141 | 0.4100 | 0.4472 | 0.3796 | 0.4137
0.4113 | 0.4155 | 0.4519 | 0.3883 | 0.4527

150 T'(4,5) 0.2517 | 0.2889 | 0.3315 | 0.3425 | 0.3230 | 0.3351
0.2893 | 0.3361 | 0.3448 | 0.3253 | 0.3329

160 T'(5,4) 0.2437 | 0.2743 | 0.3174 | 0.3253 | 0.3096 | 0.3172
0.2736 | 0.3179 | 0.3215 | 0.3103 | 0.3132

180 | T(10,2) 0.2297 | 0.2458 | 0.2966 | 0.2976 | 0.2941 | 0.2945
0.2451 | 0.2963 | 0.2983 | 0.2941 | 0.2958
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The results of simulations are summarized in Table 3, where n is the number of objects
(points of the graph) and m is the number of pairs compared (edges of the graph).

The symbols of graphs used for the designs, T(4),I'(2,5), - - -, etc. are explained in Section
6. The estimation methods are LLS, HM (Harker eigenvector method [3, 4]) and TSM (Two-
stage eigenvector method [5]).

V' Vsg: standard deviations of estimates of weights for SR or quasi-SR designs, calculated
in Table 3 for LLS and calculated by (5-2) for eigenvector methods.

V'V;: standard deviations of estimates of weights for selected random designs, calculated by
(5-1) for LLS and by (5-2) for eigenvector methods.

The upper part of each cell corresponds to the narrow type of weights and the lower part

to the wide type.

The results show that SR or quasi-SR designs absolutely exceed random designs, that is
without any exceptions that SR or quasi-SR designs give better results than random designs.
Further the results show a specific feature as a byproduct; comparing HM with TSM, in
almost cases TSM gives better results than HM, which is not main object of our research
but is important to be mentioned.

6. Construction of SR and Quasi-SR Graphs

There are various methods to construct SR and quasi-SR graphs. Here we summarize
them to cases (i) ~ (vii); in cases (ii), (iii), (vi) and (vii) we construct SR graphs and these
are mainly based on [2], in cases (i), (iv) and (v) we construct SR or quasi-SR graphs and
these are based on our own idea.
(i) Cyclic graph:

Let {0,1,---,n — 1} be the set of points, then let us call a set of edges

Cr={(G,+k)|1=0,1,---,n—1}

a cycle with initial edge (0, k), wherek = 1,2,---,(n—1)/2foroddnand k = 1,2, - ,n/2
for even n, but C,/ = {(¢,7+ k) |1 =0,1,---,n/2 — 1} for even n is called a half cycle.
The set of edges of a complete graph is represented by

CrUCU -+ UCpyye for odd n and
CLUCuU---UGCyp for even n.

Examples of n = 6 and n = 7 are shown in Table 4.

Table 4: Cyclic representation of edges.
n=2=6

(0,1) (1,2) (2,3) (34) (4,5 (5,0

(02) (1,3) (24) (35 (40) (51)

(03) (1,4) (25

C1 (0,1) (112) (2 3) (3v4) (475) (5’6) (670)
Ca (072) (173) (274) (3’5) (436) (510) (611)
C3 (053) (114) (275) (3a6) (4’0) (571) (6a2)

Let us call a graph (except a complete graph) composed of a set of cycles a cyclic graph.
Thus for n = 6, C4,C;,,C3,C; U Cy,Cy U Cy3, and Cy U C3 are all cyclic graphs. The
adjacent matrix IN of a cyclic graph is represented by the sum of basic cyclic matrices
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Table 5: Multiplication table.

n= Q; Q. Qs P,
Q, |Q;+2I Q,+Q;3 Q;+2P, Qs
Qz 2P4+2I Ql +Q3 Q2
Qs Q,+21 Q,
Py I

(JQ;=2J, JPy=J)

n= Q, Q. Qs Q,
Q, |Q+2I Q,+Q; Q,+Qs Q3+0Q,
Q, Qi+21 Q,+Q4 Q,+Qs
Q; Q;+21 Q,+Q,
Q, Q,+21I

(JQ; =2J)

P, P? ... P! (P" =1I), where P,;, (i,7) element of P, is defined as; P;;1; =1 (i =
l,--+,n—1), P,y =1 and other elements are equal to 0. For example, adjacent matrices

of C; and C,UCy are P+ P~ and P + P~! + P% 4+ P~ respectively. Let
Q=P +P" (i=1,--,[n/2))

then IN is always represented by sum of @;s. And the results of adding and multiplying
among Q;s are always represented by sum of Qs and I. The followings are multiplication
tables of Q.s for n = 8 and 9. (Note that for even n, we have PM? = P2 so
Q)= 2P™/? Instead of Q,./2, We use P™? which is rewritten by P,/;.) Of course the
table is symmetric so the under half is neglected). _
Thus IN, N2, .. are calculated by such multiplication tables, which is useful to get in-
formation about the albebra generated by N, N2, .--. In Table 7, Q;, Q;Q; and Q, P,
stand for the cyclic graphs C;,C; U C; and C; U C;, respectively.

(ii) Triangular graph T(v):
Let V be a set of size v (> 3). Taking two elements a and b of V, and let the (unordered)
pair p = {a, b} be a point of the graph. Two points p and ¢ are adjacent if and only if p
and ¢ have a common element. Triangular graph T(v) is always SR satisfying

n=,C;, d=2v-2), A=v—-2, p=4,
m =nd/2 =v(v—1)(v—2)/2 (the number of edges).

The complement T(_ﬂ of T(v) is also SR, and its parameters are determined by (2-2).
(iii) Lattice graph La(v):

Let V be a set of size v (> 2). The set of points of a lattice graph is V? (= V x V), and

two points p = (a1, a2) and g = (by,by) are adjacent if and only if p and g have a common

coordinate (a; = b; or ay = by). Ly(v) is always SR and satisfies

n=v d=2v-1), A=v-2,
=2, m=nd/2=v(v—1).

The complement Ly(v) is also SR and its parameters are determined by (2-2).
(iv) First kind k-dimensional lattice graph Ly (v); (k> 3,v > 2,1 =1,2,.--,k):
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- Let V be a set of size v (> 2). The set of points is V¥, and two points p = (a1, az,~" -, ax)
and g = (by,bq, - -, bx) are adjacent if and only if Hamming distance of p and ¢ is equal

to [, i.e.,
I{Z € {Z = 15""’]‘7} I a; 7£ bz}l = l.

Li(v); is generally quasi-SR, where parameters are
n=0v* d=,C(v-1), m=nd/2.

The complement Ly (v); of Ly (v); is a quasi-SR graph of the same order as L (v),.

(v) Second kind k-dimensional lattice graph Ly(v); (K>3, v>2, I=2,---,k—1):
Li(v)<: is the same as Lg(v); except that the definition of the adjacency is “Hamming
distance of two points is equal to or smaller than [”. This is also quasi-SR, whose
parameters are

!
n = v Z (v —1)', m=nd/2.

The graph Lk( v)<1 is isomorphic to Li(v) <k

(vi) Complete v-points k-partite graph I'(k, v):
I'(k,v) is the complement of disjoint union of k complete v-points graphs, that is, com-
plete v-points k-partite graph. This is always a SR graph whose parameters are

n=kv, d=(k-1v, d=(k-2w, p=(k—1)v, m=nd/2=k(k-2)v?/2.

An example for k = 2, v = 4 is shown in Fig. 3. The graph I'(k,v) is always separated
graph. '

(vii) Paley graph P(g):
Let g be a power of a prime number (¢ = p", where p is prime) and ¢ =1 (mod 4). Let
GF(q) be Galois field of size g (r-th order extension field of GF(p)). The points of the
graph are elements of GF(q), and two points @ and b are adjacent if and only if a — b is
a square in GF(q). This is always SR whose parameters are

n=gq, d=(q—1)/2, A=(¢-5)/4, p=(¢-1)/4, m=q(q—1)/4

The graph P(q) is isomorphic to P(q).

0 9°
07 o

06

P
0 #
0
Fig. 4: The graph P(3?).

 Example of P(32) is shown in Fig. 4, where GF(3?%) is the extension field of GF(3) =
{0,1,2} mod 3, and @ is a primitive element of 62 = 1 + 0, and 6°,6?,6* and 6° are squares
in GF(3?).
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By the above mentioned methods we construct various SR or quasi-SR graphs and list
up them in Table 7, where n is the number of points {the number with parenthesis is
2C2 = n(n — 1)/2), m is the number of edges, and d is the degree (or valency), and A and
p are parameters for SR graph. The column denoted by “order” shows the order of the
adjacent matrix N. The symbols in the column “construction method” are explained in the
above, but we abbreviate Q; 4+ Q; +---+Qk, Q: +Q; +-- -+ Py as Q;Q; - -- Qi, QiQ; - - P
respectively. The column denoted by “m/ 0” shows the standard deviation of the
estimate of weight for LLS, which is independent of data and only on the design.

The last column “\/V(w;)/o of complete” is the standard deviation of the estimate of
weight for complete information case, which takes all of ,C; possible pairs. The adjacent
matrix of complete design is N = J — I and d = n — 1. By (3-6)

M:dI—l—J—N:(n—l)I—l—J—(J—I):nI

and M~ = 1/nl. So y/V(w;)/o = 1/+/n, where V(w;) is the abbreviation of V().

In Table 8 we list up several adjacent matrices of the smaller n. This table is intended
for practical usage for actual designs for AHP. But this has also important theoretical
information. Considering that {/V(w;)/o is a criterion for goodness of designs we can say
that SR is always the best design for the same values of n and m in the table, as conjectured
in Section 1.

Further Table 6 shows that even an incomplete case, if the design is good, has sufficient
precision comparable with complete information case. Here we pick up SR designs with
about half value of m of complete design and compare the precision.

Table 6: Comparing precision.
n 8 10 12 14 16 18 20
0.354 0.316 0.289 0.267 0.250 0.236 0.229
ratio of \/V (w;)

0.467 0.424 0.391 0.364 0.342 0.324 0315
28 45 66 91 120 153 171

16 25 36 49 64 81 95

ratio of m

Table 7: Some of SR graphs or quasi-SR graph.

n |m|d X\ u|order construction VV(w)/o | V/V(w)/o
method of complete
5(10) | 5 |2 0 1 1 P(5)=Q 0.663325 0.447214
6 6 |2 2 Q, 0.716860 0.408248
(15) | 9|3 0 3| 1 I'(2,3) = Q,Ps 0.527046
1214 2 4] 1 |T@=T3,2)2P; | 0456435
7 712 2 Q; 0.769309 0.377964
(21) |14 | 4 2 Q:Q2 0.467130
8 8 |2 3 Q; 0.819680 0.353553
(28) |12 |3 3 QP 0.561010
12 |3 2 L3(2); 0.563681
16 | 4 2 L3(2); 0.484123
16 | 4 3 Q:1Q: 0.481039
164 0 4| 1 I'(2,4) ~ Q;Qs 0.467707
20 |5 3 Q; = Q:Q3P, 0.420449
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n |m|d X pu |order construction VV(w) /o | JV(w)/o
method of complete
8 |24 6 4 6 1 P;=Q:Q:Q3 0.381881
9 |92 3 Q; 0.867806 0.333333
(36) | 18 | 4 3 Q:1Q2 0.495440
184 1 2 1 P(9) 0.484332
18| 4 1 L, (3) 0.484322
2716 3 6 1 I'(3,3) 0.384900
27 | 6 3 Q:=Q:Q:Qs 0.386097
10 [10] 2 4 Q; 0.913783 | 0.3162277
(45) | 15 4 Q.P; 0.594928
513 0 1 1 T(5) 0.583095
20 | 4 3 Q.Q, 0.510347
20| 4 2 Q.:Q; 0.485627
25 5 3 Q3Q4P5 = Q1Q2 0.429052
251 5 2 Q:Q4P; = Q:Q3 0.444008
2515 0 5 1 T'(2,5) 0.424264
30| 6 4 Q:Q:Q4 = Q,P; 0.391101
30| 6 3 4 1 - T(h) 0.390512
35| 7 4 Q. 0.359307
40|18 6 8 1 Q:1Q:Q:Q4 = P 0.335410
408 6 8 1 I'(5,2) 0.335410
11 [11| 2 4 Q. 0.957787 0.301511
(55) | 22 | 4 4 - Q:Q: 0.525247
331 6 4 Q:1Q:Q: = Q4Q;s 0.397034
44 | 8 4 Q: = Q;Q3Q4Q;5 0.337580
12 |12 2 5 Q 1.000000 0.288675
(66) | 18 | 3 4 Q:Pg 0.627878
24 | 4 3 Q:1Q: 0.540062
24 | 4 5 Q:Qs 0.500481
30| 5 4 Q:Q;Ps 0.440242
36 | 6 3 Q:1Q,Qs 0.403191
3616 0 6 1 T'(2,6) 0.390868
42 | 7 4 Q:Q:Q:P¢ 0.365190
48 | 8 4 | Q1Ps = Q2Q3Q4Qs5 | 0.339971
48 | 8 4 8 1 I'(3,4) 0.338502
54| 9 5 | Q1 =Q2Q3Q4QsP¢ | 0.319472
5419 6 9 1 I'(4,3) 0.319192
6010 8 10| 1 |Ps=Q:Q:Q3Q4Qs5 | 0.302765
6010 8 10| 1 I'(6,2) 0.302765
13 |13 ] 2 5 Q: 1.040596 0.277350
(78) | 26 | 4 5 Q:1Q: 0.554677
39| 6 5 Q:1Q:Q; 0.409557
396 2 3 1 P(13) 0.399704
52 | 8 5 | Qi1Q:Q3Q4 =Q5Qs | 0.342721
65 | 10 5 | Q1Q2Q3Q4Qs5 = Qs | 0.304056
14 (14 2 6 Q: 1.079730 0.267261
(91) (21| 3 6 Q, P, 0.659640
28 | 4 6 Q:Q: 0.569061
35| 5 6 Q:1Q: P~ 0.449785
42 | 6 4 Q:Q:Qs 0.416072
49 | 7 4 Q:Q:Q:3P7 0.369799
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n m | d A p |order construction VV(w)/o | V/V(wi)/o
method of complete
14 49 |7 0 7 1 I'(2,7) 0.364216
56 | 8 6 Q:1Q2Q3Q4 0.345930
63 | 9 6 Q:1Q2Q3Q4P~ 0.323064
70 | 10 6 Q:1Q:Q35Q4Q5 0.305432
77 | 11 3 Q1Q:Q3Q4Q5P~ 0.290715
84 |12 10 12 1 Q:1Q:Q5Q4Q5Q6 0.278174
84 |12 10 12| 1 I'(7,2) 0.278174
15 15 | 2 6 Q: 1.117537 0.258199
(105) | 30 | 4 5 Q:1Q, 0.583189
45 | 6 6 Q;:Q:Q;3 0.422619
45 16 1 3 1 T(6) 0.401848
60 | 8 5 Q:1Q:Q5Q4 0.349206
60 { 8 4 4 1 T (6) 0.346410
75 1 10 5 Q:1Q:Q3Q4Q5 0.306951
75 |10 5 10 1 I'(3,5) 0.305505
90 | 12 6 Q:1Q:Q3Q4Q5Q6 0.279016
90 |12 9 12 1 I'(5,3) 0.278887
16 16 | 2 7 Q 1.154137 0.250000
(120) | 24 | 3 7 Q.Pg 0.690189
32 | 4 3 L4(2)1 0.521666
32 | 4 7 Q:1Q; 0.597054
32 | 4 7 Q1Q4 0.520076
40 | 5 7 Q:Q.Ps 0.459302
48 | 6 5 Q:1Q:Qs3 0.429178
48 |6 2 2 1 L, (4) 0.409840
56 | 7 5 Q1Q:QsPs 0.375467
64 | 8 5 Q1Q2Q5Q4 0.352574
64 | 8 0 8 1 Tr'(2,8) 0.342327
72 19 2 L4(2)2 0.323554
72 19 5 Q:Q:Q3Q4Ps 0.326398
7219 4 6| 1 Lo (4) 0.324760
80 | 10 7 Q:Q:Q:5Q4Q5 0.308666
88 | 11 3 L4(2)s 0.292961
88 | 11 3 L4(2)1 0.292961
88 | 11 7 Q:1Q:Q3Q4Q5Ps 0.292913
96 | 12 7 Q:1Q:Q5Q4,Q5Q6 0.279897
9 |12 8 12| 1 T'(4,4) 0.279508
104 | 13 7 | Q1Q2Q5Q:Q:sQsPs | 0.268642
11214 12 14] 1 | QiQ:Q3QsQ5QsQ~ | 0.258775
112 {14 12 14 1 I'(8,2) 0.258775
17 17 | 2 7 Q: 1.189632 0.242536
(136) | 34 | 4 7 Q:1Q; 0.610658
51 | 6 7 Q1Q:Qs3 0.435723
68 | 8 3 4 1 P(17) 0.348005
68 | 8 7 Q:1Q2Q3Q4 0.356031
85 | 10 7 Q1Q:Q5Q4Q5 0.310614
102 | 12 7 Q:10Q:Q5Q4Q5Qs 0.280842
119 | 14 7 Q:1Q:Q3Q4Q5Q6Q7 | 0.259359

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



326

K. Wang & I Takahashi

n m | d XA p |order construction VVi(w)/o | VV(w)/o

method of complete

18 18 | 2 8 Q: 1.223582 0.235702
(153) | 27 | 3 7 QP 0.719566
36 | 4 7 Q:9Q: 0.623954
45 | 5 6 Q:1Q:Pyg 0.468172
54 | 6 7 Q:Q:Q: 0.442186
63 1 7 7 Q1Q:QsPs 0.380386
28 5 Q:Q:Q:Q,4 0.359513
81 19 5 Q1Q:Q3Q4P9 0.329300
81 |9 0 9| 1 T'(2,9) 0.323942
90 | 10 6 Q:Q:Q:Q4Qs 0.312595
99 | 11 7 Q:Q:Q:Q.4Q;5P 0.295304
108 | 12 6 Q:1Q:Q:Q:Q5Qs 0.281880
108112 6 12 1 I'(3,6) 0.280542
117 | 13 7 Q:1Q:Q:Q4Q5Q6Ps 0.270104
126 | 14 8 Q1Q:Q:Q:Q5Q6Q- 0.259964
126 | 14 4 Q1Q2Q3Q4Q5Q6Q7Py 0.250986
135 |15 12 15 1 I'(6,3) 0.250924
14416 14 16| 1 Q:1Q2Q:Q:Q5Q6Q7Qs | 0.242956
144 | 16 14 16 1 r'(9,2) 0.242956

19 19 | 2 8 Q; 1.257662 0.229416
(171) | 38 | 4 8 Q:1Q: 0.637088
57 | 6 8 Q:Q.Q; 0.448650
76 | 8 8 Q:1Q:Q:Q 0.362541
95 | 10 8 Q:Q:Q:Q.4Q5 0.314608
114 | 12 8 Q:Q:Q:Q.4Q5Qs 0.283033
133 | 14 8 Q:Q2Q3Q4Q5Q6Q7 0.260602
152 | 16 8 Q:1Q2Q35Q4Q5Q6Q7Qs 0.243382

20 20 | 2 9 811 1.290349 0.223607
(190) | 30 | 3 8 Q:P1o 0.747888
40 | 4 8 Q:1Q: 0.649956
50 | 5 8 Q:Q:Py 0.477148
60 | 6 8 Q1Q:2Qs 0.455103
70 |7 9 Q:Q:Q3P 0.384918
80 | 8 5 Q:1Q:Q:Q. 0.366639
9 | 9 5 Q:1Q:Q3Q4P10 0.332740
100 | 10 5 Q:Q:Q3Q4Qs 0.316700
10010 0 10| 1 I'(2,10) 0.308221
110 | 11 5 Q:Q:Q:Q4QsP1o 0.297482
120 | 12 9 Q:Q:Q:Q:Q5Qs 0.284319
130 | 13 9 Q:Q:Q:Q:Q5Q¢P10 0.271759
140 | 14 7 Q:Q:Q35Q4Q5Q6Q7 0.261287
150 | 15 8 Q1Q2Q:Q4Q5Q6Q7P10 0.252017
150 | 15 10 15 1 I'(4,5) 0.251661
160 | 16 8 | 91Q:Q:Q4Q5QsP9Q-Qs | 0.243819
160 | 16 12 16 1 I'(5,4) 0.243670
170 | 17 9 Q1Q2Q3Q4Q5Q6Q7Q8P10 0.236435
180 |18 16 18| 1 | Q:Q:Q3Q4QsQsQ7QsQo | 0.229734
180 | 18 16 18 1 I'(10,2) 0.229734
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Table 8: Adjacent matrixes of some cyclic graph.
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7. Conclusion

(a) We proposed SR designs to select pairs in the whole set of ,,C; pairs in AHP, and showed
by simulation that SR design is the best of all other designs with the same value of n
(the number of objects) and m (the number of pairs). (See Section 2, Table 3, Section
5.)

(b) An SR design corresponds to an SR graph. From the analytical properties of the adjacent
matrix IN of an SR graph, we give the theoretical formula to calculate the variance of
estimates of weights for an SR design. (See Section 3.)

(c) The SR graph exists for only very sparse values of n and m. So we extend the SR graphs
to the quasi-DR graphs which exist for wider values of n and m. It is shown by simulation
that the quasi-SR design also gives good results. (See Section 4, Table 3, Section 5.)

(d) We surveyed the construction methods of SR graphs and further give new construction
methods of SR and quasi-SR graphs (see Section 6). By these methods we construct SR
and quasi-SR graphs and list up them with necessary parameters for n = 5 ~ 20 and
various values of m. (See Table 7.)

(e) Table 7 gives not only practical designs for AHP, but also various theoretical information.
This shows that SR or quasi-SR design with rather smaller values of m gives fairly good
results compared with complete designs, and SR design is always better than quasi-SR
with the same values of m and n. (See Table 7.)
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