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Abstract There are several difficulties with GP. This paper is an appraisement to the effectiveness of GP in 
incorporating DM's preferences and explains some fundamental relationships among the different approaches 
of incorporating. Since each approach has its own way and properties, we integrate the approaches by a 
unique classification. We explain why and how inappropriate approximation of nonlinear functions may lead 
to missing information about DM's preferences and how we can minimize the lost information in GP. Finally, 
an effective and interactive procedure with a numerical example is suggested in order to help analysts in 
defining the DM's preference functions more effectively. 

1. Introduction 
In order to solve any decision problem, we have to identify an opportunity set and preference 
functions. Most of complex decision problems involve multiple conflicting objectives and 
often no dominant alternative will exist that is better than all other alternatives in terms 
of all of these objectives. In this case, our problem is one of value tradeoffs that requires 
the subjective judgement of the DM. In the case of decision problems with multiple and 
conflicting objectives, in order to solve a system of simultaneous equations and to do a 
well trade-off analysis. Goal Programming (GP) is applied. Hannan[3] places GP position 
between multi-objective mathematical programming, where DM7s preferences or tradeoff 
ratios for different objectives are not asked, and multi-attribute utility theory, where the 
values of various parameters are determined. There are some difficulties and criticisms on 
the use of GP models such as dominance, inferiority, and inefficiency in GP solutions, naive 
relative weighting and prioritization in GP models, incomrnonsurability and redundancy. 
One of the import ant difficulties with GP is that GP can not incorporate DM's preferences 
effectively. Since in GP relative weights for different goals are often viewed as a type of 
utility function of DM. Rosenthal[lO] has argued that relative weights will almost never 
reflect the true decision making environment. 

This paper is an attempt to answer some important questions such as: 
(A) Is GP able to reflect the DM's utility function appropriately? 

(B) What are the most important limitations and difficulties with GP in incorporating 
DM 'S preferences? 

(C) How can we remove or relax these limitations and difficulties as much as possible? 
In section 2 we will answer to the first and the second questions by explaining the properties 
and the restrictions of each kind of GP in incorporating DM7s preferences. In section 3 we 
will answer to the third question by applying the interactive piecewise linearzed general 
value function method. In order to help analysts in determining the DM7s preferences, that 
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is a difficult and an important step in modeling process, we will introduce an effective and 
interactive procedure to define DM's preferences for different criteria. A numerical example 
is described for proposed procedure. Finally. conclusions and final remarks are provided. 

2. Literature Review 
One of the important difficulties with GP is that it can not reflect DM's preferences appro- 
priately. In order to determine the tradeoff ratios for various objectives. several methods 
have been suggested. Charnes and Cooper [l] suggest the interval methodology. Gass[4] 
proposes the normalized vector method based on the AHP of Saaty. 07Leary[8] proposes 
the conjoint analysis, some researchers [2.11 ]suggest to utilize the concept of the fuzzy set 
and membership function. and Takeda and Yu[13] provide a well discussion on the pairwise 
comparisons based on the Habitual Domain Theory (HDT). 

Schniederjans[12] shows that all the GP  models can be decomposed into preemptive 
lexicographic GP model, in which each of the functionals or goals are given by a separate 
priority and the model has no weights but only a preemptive ranking for each of goals, 
and the nonpreepmtiue weighted GP model. in which the relative weights to goals in the 
same priority level will be assessed, ranked. and incorporated into the objective function of 
GP models. These two extremes are not comprehensive for making all kinds of GP models 
because they can explain GP models with goals that have constant tradeoff ratios and then 
can not explain nonlinear models effectively. What if the DM's values for different goals 
change over the different obtainable level of goals? In nonlinear cases, linear GP models are 
not effective in incorporating preferences and reflecting the real decision environment unless 
they compensate the lost information by introducing several linear segments interactively 
and incorporating them into the objective function of GP models. Value Function method 
and Fuzzy method are two important methods in this area. 

Hannan[3] suggests that as a first step the analyst should develop a value funct ion that 
is actually representative of the DM's values. A function v(X) is said to be a value function 
representing the DM's preference structure provided that X' X" <=  ̂ v(X') = v(Xq') 
and X' > X" <=  ̂ -u(X1) > <u(X1'), we find action a E A to maximize u[X(a)] where X 
is alternative vector. If (xi ,  x2, . . . , xn) is a point or an alternative. u(x1, x2, . . . , xn) 5 
 xi, X;, . . . , x'} ^=> (xi,  x2, . . . , zn) (xtl, X;, . . . , X/) where reads preferred or indifferent 
to. Also we can find some functions /' with a simple form such that TV(xl, Q,. . . , xn) = 
/ [ U  (xi),  'u(x2), . . . , U (xn)] where in complex multiat tribute problems designates a value 
function over the single attribute X-,. We assume that each attribute is positively oriented. 
the more of any component the better. given any fixed level of the other components. To 
hold all attributes fixed and look at the substitution rates as a function of a given amount 
of an attribute, we can realize the marginal rates of substitution for each attribute. The 
marginal rate of substitution between X and Y depends on y not on x if and only if there 
is a value function v of the form v(x, y) = !X: + v(y) over attribute Y. The additive value 
function is about as simple as we can find. A preference structure is additive and therefore 
has an associated value function of the form v(& = vx(x) + VY(y) where vx and u y  

are value functions. A value function v may be expressed in an additive form u(x ,  y, z )  = 

'ox (X)  + V* (y) + ,(lz ( 2 )  where lux, VY, and uz are single-attribute value functions, if and only 
if (X, Y )  is Preferentially Independent (PI) of Z.  (X, Z) is (PI) of Y. and (Y, 2) is (PI) of 
X. In other words, each pair of attributes must be (PI) of the remaining attributes. Given 
attributes Xi ,  X2, . . . , Xn, n >. 3 an additive value function , u ( - T ~ ,  .z-2, . . . , zn) = ,ui(Xi) 

where U, is a value function over X-, exists if and only if the attributes are mutually (PI). If 
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each pair of attributes is (PI) of its complement, the attributes are pairwise (PI). Considering 
these assumptions, we can easily make v(xl,  $2, . . . , x,J = vi (xi) by the component 
value functions[6]. 

A calculation in GP consists of minimizing tlie'gap between the attained level of each 
objective and the goal for this objective. Defining ,qi as a target level of the i th goal 
(i = l, 2 , .  . . ,m)  and as the contribution of the j th  variable ( j  = l, 2, .  . . , n) in the 
ith goal. for each solution x = (xi,  x2, . . . , xll) E ( X ) ;  where (X)  denotes feasible solution 
set; we can measure the deviation by (li = I (~ij:';., - ,qil. Since less deviation being 
prefer to more (or equivalently more goal achievement being prefer to less), a component 
value function 'o(di) for the ith deviational variable in terms of alternative ( q ,  ~ 2 ,  . . . , xIi), 
should be a decreasing function of 4 (or increasing function of goal achievement (i). In 

9v(d 1 mathematical terms we have -&- < 0 or > 0. w(iii) G [O, l] that its values are 
8% 

determined by DM where v((ii) = 1 if cli = 0, and v(di) = 0 if (li takes its maximum value. 
Equivalently, ,11(9~) G [O, l], ,0(gi) = 1 if takes its maximum value; and ,o(gi) = 0 if takes 
its minimum value. ~i may be in nonlinear form. In this case; the value function approach 
approximates nonlinear functions with several pieccwise linear functions. According to the 
value function method, in order to define DM's value function in Multiple Criteria Decision 
Making (MCDM) and specially in GP. we have to define multi-valued functions for multiple 
criteria or goals. A general definition of value function for linear GP  models with 'in goals 
can be expressed by 

or equivalently, 
ni 

where YIV(c,/) and ' l lV(g) are the value functions, 'u(di) and r(gi) are the component value 
functions in terms of deviational variable and obtained level of goal. respectively. Some 
forms of decreasing functions in terms of deviational variable and equivalently increasing 
functions in terms of goal achievement level are shown by Figure 1. 

Figure 1: Some forms of decreasing and increasing functions 
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For some nonlinear functions, such as quadratic functions, there are efficient algorithms 
and softwares to optimize a quadratic objective function subject to some linear constraints. 
For others, higher order functions, we should use of nonlinear GP or should accurately ap- 
proximate nonlinear functions by some piecewise linear segments and then use of linear GP. 
Inappropriate approximations will decrease the effectiveness of a decision making because of 
losing the important information about DM's preferences. The pioneer paper of Pratt [g]. for 
example, explains that investor's behavior may be well expressed only by nonlinear functions 
in mean-variance method and if we approximate investor's nonlinear functions inaccurately. 
we ignore the important information about the investor's real preferences and consequently 
can not express and incorporate DM9s preferences appropriately. 

According to Hannan9s suggestion and also well known generalized criterion method of 
Promethee. Martel and Aouni[7] propose an approach in order that the DM can build his 
preference functions along with the goals he has fixed for each objective. Rather than trying 
to establish utility functions for different values of each objective and translate them into 
objective function of GP as Hannan suggests, they refer to the idea of generalized criterion 

his idea not only leads to differences of performance between two actions on 
a given criterion, but also leads to consideration of value functions expressing the density 
of DM's preferences in a way which is easy for him to understand. They suggest that 
preference functions may be different for negative an osi tive deviational variables and for 
the different objectives. They forget to consider the e t s  of time horizon in changing DM's 
preference functions in multiperiod models. For example. in multiperiod portfolio models, 

nce of investor for risk may change with the time horizon of portfolio decision 
nthorpe and Levy[5] found that increasing the horizon, investors prefer to hold 

more safety securities in their portfolios. 
Sometimes DM may not be able to express his target levels for different goals precisely. 

In these cases. Fuzzy or imprecise goals of the DM may be incorporated into a standard 
GP formulation and new problem can be solved by using the properties of piecewise linear 
continuous functions and GP deviat ional variables [2.1 l]. Interactive methodology for solving 
the fuzzy GP problem is as follow: 

Elicit a membership function for f\{zi) from the DM for each of objective functions 
zi, i -= 1 '2 ,  . . . , k;. We can quantify goals "somewhat larger than" or "less than" by 
eliciting a membership function or by scaling it between 0 (no degree of membership) 
and 1 (complete membership). 

Connect the points in the discrete membership function with line segments to obtain 
Interpolated Membership Function (IMF), that is a piecewise linear and continuous 
function. 

N Convert each membership function fi (zi) into 14%) = ai 1 %  - gi 1 + 1 3 ~  + 7 where 
t j  l l -t, a=- taw + l - t 1  sj I 1 - 3 1  . f t  = 7, 7 = 7 and for each segment g,-1 5 zi 5 g, we have 

fi(q) == + S,. 4 is the slope and S ,  is the y-intercept for the section of the 
curve initiated at gr_i and terminated at  $. G represents an objective of the form 
z; = Gl C;%, /; (2,) values are grade of membership, 0 5 .{z{zi) < 1 for all values of 
2 .  Defining z: and z' as the maximum and minimum possible values for an objective 

2" -G 
function, we can associate fi(zi) = 1 for zi > 2:: fi^zi) = 1 - - Z; - Y '  

-; 
for 2' < zi < z*, 

and ./̂ ) = 0 for zi < z:(i = 1 , 2 , .  . . , A; ) .  
Determine the objective function: (1) DM may use goals and preemptive priorities wit h 
different order of rnagnitude.(2) DM may weight the various goals and assume they 
are all of the same order of magnitude. 
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The other important difficulty is that many of DM's do not obey all the rationality 
when faced with a series of complicated and multiple criteria choice situations because DM 
encounter aspects of the problem that were not of concern to them in simple situations 
and this kind of behavior may create some difficulties in defining DM's value functions. 
Equipped with literature, in the next section we will provide an effective and interactive 
procedure in the manner that minimizes the difficulty of defining DM' preferences. 

3. An Effective Procedure for Defining DM's Preferences 
In order to make optimal decisions DM should be informed of opportunity set of his de- 
cision problem. The best opportunity could be extracted from the set by defining DM 
preferences. Several approaches and models are provided for different kinds of GP models. 
The approaches are different in terms of the form of objective function and each of them, 
except general value function approach, is efficient and effective for special models. The 
most important work of an analyst is to determine the best approach for a given GP prob- 
lem. A multiobjective GP problem may be in (1) lexicographic form, DM may use goals and 
preemptive priorities wit h different order of magnitude. (2) non-preemptive weighted form, 
DM may weight the various goals and assume they are all of the same order of magnitude, 
(3) preemptive weighted form, consists of some goals with different order of magnitude and 
some with the same order of magnitude, (4) or in general value function form. 

As a first step. analyst should separate three kinds of goals, absolute prior goals with no 
substitution rates, goals with constant rate of substitution, and goals with variable rate of 
substitution. Then. if all goals are in absolute prior form, the lexicographic form is valid. If 
all goals have constant tradeoff ratios, the non-preemptive weighted form is valid. If some 
goals have constant tradeoff ratios and some are in absolute prior form. the preemptive 
weighted form is valid. And if there are some goals with variable rate of substitution, we 
may express each of them with linear segments and use of non-preemptive weighted form or 
it may be better to apply the general value function. The following interactive procedure 
will help analysts in determining the DM's preferences more effectively: 

(I) what criteria {Cl, C2, . . . , Cm} are included in MCDM problem? 

(11) when the pairwise comparison is possible and desirable for DM, create list of all possi- 
ble pairs of criteria {Ci <=> C2, Cl <=> Cs, . . . , Cl <=> Cm, . . . , Cm-l <=> Cm} 
and provide it to the DM for the comparison. Rewrite the results in the form of 
Ci > Cj where i # j .  Finally, rank criteria from the most important criterion to the 
inferior one in terms of times that a criteria has been in greater side of comparisons. 
After ranking go to the next step. 

(111) which criteria have no substitution or have absolute priority to the other criteria? In 
other words, are there criteria with infinite substitution rate related to each of the 
other criteria? Extract and sort them according to their importance sequentially in 
the form of (Pl >>> >>> . . . >>> h), where the symbol of >>> in Pi >>> P, 
means Pi is very very bigger than P,. P is the symbol of absolute priority so that 
devotes an absolute priority to a criterion in terms of the other inferior criteria,. If 
L = m. we havePl >>> Py, >>> . . . >>> or we have a lexicographic G P  model. 
If L < m go to the next step. 

(IV) if all \m - L] criteria are quantitatively comparable and it is desirable for DM to 
determine constant tradeoff ratios, arrange all pairs of remaining criteria from the 
easiest pair to compare to the most difficult pair. Starting with the easiest pair we 
can ask DM. is criterion i at least t times more important than criterion j ?  If not. is 
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criterion i at least t - s times more important than criterion j (for S < L ) ?  and so on. 

(V) if the answer to the first question in step 4 is yes. we can ask DM, "is criterion i at 
least f ,  + q times more important than criterion j?" and so on. By this way. we can 
define W1 > W 2  > . . . > Wf  by pairwise comparison methods. If I, = 0 and f = m. 
we have W\ > Wy > . .. . > Wm or a nonpreemptive weighted G P  model, and if L > 0. 
f > Onand L + j' = m,, we have preernptive weighted G P  model. 

(V I )  if L > 0, f > 0 and L+ f < m. there are some criteria that are not absolutely prior and 
have not constant tradeoff ratios. When the expression of priority weights is difficult 
for DM and the interpretation of the coefficient remains complex and ambiguous. 
we can determine DM's preference over the range of deviation from the target level 
and the effective approach is general criterion method (GCM) in which we define a 
value function for each criterion and the objective is to maximize DM's total goal 
achievement level. The difference between fuzzy GP and this method is not in the 
resulting mathematical formulation but essentially with respect to the philosophy that 
underlies the DM's input. According to GCM, for each objective i and for each pair of 
actions ( X ,  y) E X 2 ,  we can associate a function Pi ( X ,  y) measuring the DM's preference 
intensity for x  over y in order to have 

Pi(x, y )  = 0 for indifference, . / , (X )  g . f i (y) ;  
P i (q  y) S 0 for week preference, j\{x} >- f i ( g ) ;  
Pdx, p) 2 1 for strong preference, j\(x) >-̂  f i  (y); 
P i ( q  y) = 1 for strict preference. ./'J!E) F>->- f i ( y ) ;  

where f . (x )  = a.jxj and j'.(y} = a i , y  Defining di = f i ( x )  - f,(y), as 
the difference in performance between the action X, y in relation to criterion 4 this 
performance function Pi(? y) can be defined by a criterion or value function noted by 
F(di) .  F ( & )  expressing the intensity of DM's preferences in such a way that it is easy 
for him to understand. GCM form will be as MuxZ = ~ z ~ ( k ; 4 ^ , ' 1 '  + Pi-̂ ). The 
value of 7i then could be translated in terms of a realization percentage of goal fixed 
by the DM and ranges from 0 to m where m is number of criteria or goals and the 
closer Z is to the value m. the more globally satisfied the DM. 

In order to extract DM's value function by some sub-value functions. considering GCM 
method, we can perform the following process: 

(I) calculate individual minimum and maximum of each of the objective functions under 
the given constraints (/pn, ,fyax) and determine the range of deviational variable for 
each goal. 

(11) provide to the DM different types of functions so that the DM can select functions 
for different objectives from among them in an interactive and subjective manner. 
A criterion function may be in linear, exponential, hyperbolic, hyperbolic inverse, 
piecewise linear form[ll]. Also Promethee proposed six types of criterion function 
each one corresponding to one type of criterion from which DM can easily find the 
functions corresponding to his preferences for each objective[7]. 

(111) Determine the parameter values through an interaction with the DM. 
This interactive, directive, and suggestive procedure as an framework can help analysts in 
determining DM's preferences. The flow chart of the procedure is as Figure 2: 
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Stall 9 

Extract L nbsolutc prior crilcria , Sort 1, critcria and apply 
Is L-111 lexicographic GP 

iatios and apply 
prccniptivc 
wcightcd GP 

criteria constant and apply nonpreemptive 
tradcoffr.ilios 
pairwiscly 

l 

Dctcrminc niaxiniuni value 
for each dcviational variable 

Define DM preference functions along will1 
the pods lie lias fixed for each obicctivc 

Apply general criterion GP 

End c3 
Figure 2: An interactive and directive procedure for determining DM's preferences 

The following numerical example demonstrates the procedure more clearly. 

4. A Numerical Example 
In order to explain the proposed procedure, consider a production decision problem that is 
illustrated in reference!?]. The first question from DM is "what criteria {Ci, C2, . . . , Cm} 
are included in MCDM problem?" Since DM considers 5 criteria, then the answer will be 
m = 5 or {Cl,  C2, C3, C4, C&}. 

The second question from DM is that "is the pairwise comparison possible and desirable 
for you?" If the answer is yes, we create list of all possible pairs of criteria {Cl <=> 
C2, Cl <=> C3, Cl <=> C4, Cl <=> CS.. . , <=> CS} and provide it to the DM to 
compare. For example, one possible answer may be as {C\ > C2, Cl > C3, Cl < C4, Cl < CS, 
C2 > < C4, C2 < CS, C3 < C4, C3 < CS, > CS}.  Rewrite the results in the form 
of Ci > Cj where i # j as {Cl > C2,C1 > C3,(\ > C1,Co > &C3 > C2,C4 > C2,C5 > 
C2, Q, > C3, CB > C3, C4 > CS}. C4 is 4 times in greater side, is 3 times in greater side, 
Cl is 2 times in greater side, Cy  is 1 time in greater sidein greater side, and finally C2 is 0 
time in greater side. Then! we can rank criteria from the most important criterion to the 
inferior one as {a CQ, C\, CS, C2}. After ranking go to the next step. 
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Which criteria have no substitution or have absolute priority to the other criteria? If 
all. then we have 13 >>> 1'2 Ãˆ !\ >>> I$ >>> h. When IJ = m, I\ >>> >>> 
]l3 >>> 1\ >> > I'o or we have a lexicographic GP model as (h >>> Cc, > >> C\ >>> 
C3 >>> Cz. If 1, = 0 go to the next step. 

L = 0 means that  all criteria are in the same priority level. When all [m - L] criteria are 
quantitatively comparable and it is desirable for D M to determine constant tradeoff ratios. 
arrange all pairs of criteria from the easiest pair to compare to the most difficult pair. 
Starting with the easiest pair we can ask DM, is criterion i. at least, for example, 5 times 
more important than criterion j"? If not. is criterion i. at least 5 - 1 = 4 times more important 
than criterion ;j? and so on. If criterion i was at  least 5 times more important than criterion 
j ,  we could ask DM. is criterion i at  least 5 -t 1 = 6 times more important than criterion 
j7 and so on. From the result of comparisons, we can create a reciprocal matrix and apply 
some well known methods such as Eigenvector Method (EM) t o  calculate the normalized 
priority weight vector. Suppose that (\ is 2 times more important than CS, 2 times more 
important than Cl, and times more important than <&. C5 is 9 times more important than 
C3. and is 2 times more important than (\. Applying (EM): the normalized priority 
weight vector is W = (.420, .308, .191, .048, -034). By this way; we can define the objective 
function of nonpreemptive weighted G P  model. If IJ = 0 and m - L = f = ?Ã ,̂ we have 
W\ > W2 > . . . > W. or a nonpreemptive weighted G P  model. 

When L > 0, and all m - L criteria are in the same priority level, and also it is possible 
and desirable for DM to determine constant tradeoff ratios for all same priority level criteria. 
we have a preemptive weighted G P  model. Suppose. for example, only C\ has absolutely pri- 
ority to  the other criteria and C=, is 5 times more important than c\. 7 times more important 
than and 3 times more important than C2. Cl is 6 times more important than C3, and 
6 times more important than Ca. Also ?3 is 5 times more important than Cz. Applying 
geometric mean method (GMM), the priority weight vector is W = (-557, .285, .102, .056). 
Finally, we can easily define the objective function of preemptive weighted G P  model. 

If L > 0, /' > 0 and L + /' < YÃ‡, there are some criteria that are not absolutely prior 
and have not constant tradeoff ratios. In this case and also when the pairwise comparision 
is not possible or desirable (as stated in step 2). we can determine DM's preference over 
the range of deviation from the target level and the effective approach is general criterion 
method (GCM) in which we define a value function for each criterion and the objective is to  
maximize DM's total goal achievement level. Suppose that criterion functions for production 
problem are as Figure 3: 

Figure 3: Criterion functions for production problem 
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F.(d.?)  = 1 if ( d t )  5 0 ,  Fad.?)  = 0.5 if 0 < (G) 5 200, F:(@) = 0 if 200 < 
(df} 5 300. @(c$) = 1 - O . O O O ~ ~ }  if 0 < (a) 200, = 0 if 200 < (d.}) 5 350. 
FL(d.2) = 1 if 0 5 (d.;) 5 25, F*) = 1.25 - O.Ol& if 25 < ( d o )  < 125. FT(&) = 0 
if 125 < (d.;) 300. FT(^; )  = 1 if 0 < (d;)  5 10. F.(d.} = 1.11 - O . O l l &  if 10 < 
(d.;) 100. m) = 0 if 100 < (d.;) < 240. K(d;) = 1 if (G) = 0 ,  F ~ ( d . 4 )  = 0 if 
0 < (d.:) 5 100. These relations can be easily incorporate into the objective function of GP 
model subject to some constraints. Since we axe not to explain the mathematical formulation 
process of these criterion functions, see reference [7] for mathematical formulation. 

5. Conclusions and Final Remarks 
Solving any decision problem requires to the opportunity set and DM7s preferences. In this 
paper, we assessed different GP approaches in terms of incorporating DM7s preference. Since 
sometimes DM have some nonlinear preference function, approximating a nonlinear prefer- 
ence functions inappropriately may lead to oversimplifying the reality of the problem, losing 
the important information about the DM's preferences, and decreasing the effectiveness of 
a decision making. By applying generalized criterion method and approximating nonlinear 
preference function by a function with several pieces of linear segments we can relax and 
minimize DM confusion and make it is to understand. Since defining DM7s preferences for 
different objectives regards a difficult and important step in modeling process, we proposed 
an interactive and suggestive systematic procedure in order to maximize the effectiveness 
of GP models in incorporating DM'preferences. To demonstrate the procedure, finally a 
numerical example is provided. 
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