
Journal of the Operations Research 
Society of Japan 

Vol. 41, No. 2, June 1998 

INTERACTIVE DECISION SYSTEM IN STOCHASTIC 
MULTIOBJECTIVE SCHEDULING TO MINIMIZE THE EXPECTED 

VALUE AND VARIANCE OF TOTAL FLOW TIME 

Hiroyuki Nagasawa Chue Shing 
Osaka Prefecture University 

(Received September 20, 1996; Final February 2, 1998) 

Abstract Stochastic two-objective scheduling to minimize both the expected value and the variance of 
total flow time is one of the most interesting subjects for shop-floor managers. This paper develops a 
heuristic method for generating a set of nondominated schedules to this two-objective scheduling problem 
in a parallel machine case, on the basis of the heuristic method proposed for a single machine case by Jung 
et aZ.(1990). Introducing some new categories of the set of nondominated schedules, this paper proposes 
an interactive system (ISMSS) for selecting a preferred schedule from among the set of nondominated 
schedules. 

1. Introduction 
In actual scheduling, shop floor managers often face the difficult task of evaluating which 
schedule is the best under multiple criteria. The number of papers on multiob jective schedul- 
ing remains still little compared with the case of conventional single-objective scheduling, 
although a long time has passed since Smith[19] initiated dual criteria scheduling in 1956. 
Van Wassenhov and Gelders[20] developed an efficient algorithm to generate a set of non- 
dominated schedules to the two-objective single-machine scheduling problem to minimize 
both the mean flow time and the maximum tardiness, on the basis of Smith's algorithm. 
Nelson et al. [l41 summarized multiobjective single-machine scheduling research and devel- 
oped some tree procedures for generating a set of nondominated schedules. Huckert et al.[6] 
formulated a mathematical model of six-ob jective, M-machine job shop scheduling and pro- 
posed an interactive method to find a compromise schedule. Sen et al.[18], Daniel et al.[3] 
and Ra jendran[16] proposed various time-consuming br anch-and-bound algorithms to some 
multiobjective flowshop scheduling problems. 

Various efficient heuristics for generating a set of nondominated schedules have been 
also developed recently. For example, Ra jendran[17] developed some heuristic algorithms 
to multiob jective flowshop scheduling problems. Morizawa et al. [l21 developed a gener- 
alized efficient method for generating a set of nondominated schedules and for searching a 
preferred schedule in multiob jective flowshop scheduling. Murata et al. [l31 applied a genetic 
algorithm(GA) to some multiobjective flowshop scheduling problems. 

On the other hand, multiobjective scheduling area has been also widened to some new 
field such as fuzzy-related scheduling and stochastic scheduling. For example, Ishii et al.[7] 
formulated their unique two-objective, single-machine scheduling problem to minimize the 
maximum lateness and to maximize a satisfaction level with respect to fuzzy precedence re- 
lation between any pair of jobs and proposed a method for generating a set of nondominated 
schedules. Jung et al. [g] provided an efficient algorithm based on a pairwise-job-interchange 
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method to a stochastic two-objective scheduling problem to minimize both the expected 
value and variance of total flow time. Forst [4] dealt with bicriterion stochastic scheduling to 
minimize the sum of the expected total weighted tardiness and the expected total weighted 
flow time. 

The major problem which should be resolved in multiobjective scheduling is how to 
select a preferred schedule from among a set of nondominated schedules without a lot of 
efforts for a decision maker to judge which schedule is better than others. 

In solving multiple criteria decision making problems, Korhonen et al. [ I l l  distinguished 
the following three solution principles: (i) Prior articulation of preferences, (ii) Interactive 
articulation of preferences and (iii) Posterior articulation of preferences. In multiobjective 
scheduling area, most papers are related to the third principle, but few methods have been 
proposed for selecting a preferred schedule from among the set of nondominated schedules. 
Since the set of nondominated schedules sometimes includes some hundreds of nondominated 
schedules, it is hard for a decision maker to select a preferred schedule from among such 
a lot of nondominated schedules by comparing the criterion vector values of nondominated 
schedules wi fch each other. 

Fortunately, in stochastic multiob jective scheduling, we can use some stochastic meaning 
of each criterion vector value for selecting a preferred schedule as additional information. 
Therefore, we present a new decision support system, called " Interactive Stochastic Multi- 
objective Scheduling System (ISMSS) ," in stochastic multiob jective scheduling to minimize 

cted value and variance of total flow time initiated by Jung et al. [g]. 
variation of processing times affects the completion times of jobs, and then the 
dule in the succeeding stages. If the variance of total flow time is small, the 

ence between the planned schedule and the actual schedule becomes small, lightening 
the burden of rescheduling task in the succeeding stages. Otherwise, the difference becomes 
large, resulting in a lot of tardiness or requiring frequent rescheduling in the succeeding 
stages to reduce the tardiness. However, to minimize the variance of total flow time itself 
does not guarantee to minimize the expected value of total flow time but sometimes follows 
a large expected value of total flow time. Simple pairwise comparison of criterion vector 
values of nondominated schedules does not always help a decision maker reduce the set 
of nondominated schedules. Instead, we assess each criterion vector value by using the 

rd l O O a  percentile, and derive the dominance relationships between 
S under an allowable excess probability a. If the the upperward 

l O O a  percentile of a nondominated schedule is larger than that of the other nondominated 
e former schedule is judged "worse" than the latter schedule under a given 

probability a .  Using this relationship, we can reject many "worse" nondominated schedules 
from the set of original nondominated schedules for the range of a specified by the decision 
maker. Furthermore, in selecting the perferred schedule, it is easier for the decision maker 
to assess a pair of a and the upperward l O O a  percentile than to assess a pair of the expected 
value and variance of total flow time directly. 

Therefore, this paper presents some new concepts of nondominated schedules related to 
the upperward l O O a  percentile, and discusses the relationships between the original non- 
dominated schedules and the newly derived nondominated schedules. Exploiting the rela- 
tionships, we propose the ISMSS for the decision maker to select the preferred schedule from 
among the set of nondominated schedules. Through this ISMSS, we can show the decision 
maker a lot of original nondominated schedules on a computer display in an aggregated 
manner, and automatically present the relationships between these nondominated schedules 
under various values of a. Tasks necessary for the decision maker are only to specify the 
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range of allowable excess probability a and finally to select the preferred schedule from 
among a few remaining candidate schedules. These tasks are much easier for the decision 
maker to do than those of repeating direct comparisons of the criterion vector values of non- 
dominated schedules in a usual way, reducing the difficulty in judgements for the decision 
maker to select the preferred schedule. 

For this purpose, we first describe "ISMSS" in a single-machine case. Secondly, we pro- 
pose a heuristic algorithm to generate a set of nondominated schedules in a parallel-machine 
case, and extend the interactive system to the parallel machine case. Some numerical ex- 
amples are shown to demonstrate the effectiveness of the proposed system. 

2. Stochastic Multiob jective Scheduling 
According to Abdelaziz et al. [l], the generalized form of the "Multiob jective Stochastic 
Linear Programming(MSLP)" problem is defined as follows: 

min{C(w)x 1 A(w)x < b(w), W E fl}, (2.1) 

where C(w) and A(w) are random matrices, and b(w) is a random vector defined on some 
probability space (fl, B, 'P). If the constraint can be replaced with deterministic one, and 
if the probability space fl can be approximated by a small number of scenarios S E S = 
{l, 2, a , S},  the following formulation is obtained: 

min{C'x 1 A x  < b, ~ r o b { E  = CS} = p., s E S}. (2.2) 

Joshi[8] formulated " Stochastic Programming Problem(SPP) " as 

or introducing the scenarios, he also gave another expression of SPP as 

min{E[f{x, C}] \ g(x)  2 o,  ~ r o b { e  = CS) = p., s E S}, (2-4) 

where E ( S ) ,  g (-) and f ( S )  denote the expected value, a vector function, and a scalar objective 
function, respectively. 

Using these formulations, we can formulate a stochastic multiobjective scheduling prob- 
lem as follows: 

where f ( m )  denotes a scheduling criterion vector function and I'I denotes a set of feasible 
schedules, TT. The element of C(w), denoted by ct,(w), is a random processing time of job 
Ji at machine 4 in this case. Taking the expectation of f ( S ) ,  we can derive the following 
form: 

where E[f (m)] denotes a expected value of the vector function f ( m )  whose element is defined 
by E[fi(-)l. The chance constrained scheduling problem solved by Kise et al.[10] is a single- 
objective case of the stochastic scheduling problem defined by Eq. (2.5) where the objective is 
to maximize the number of early jobs being completed prior to its due date with a probability 
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greater than or equal to a. Of course, we can introduce some stochastic constraints to our 
scheduling problem as follows: 

where g (C(w)  , W) denotes a random vector function representing the stochastic constraints 
such as random machine failure, random due date and random arrival time. We call the 
scheduling problem defined by one of Eqs. (2.5) through (2.8) the " Stochastic Multiobjective 
Scheduling Problem(SMSP) . " 

In this paper, we consider the following stochastic multiobjective scheduling problem 
initiated by Jung et al. [g] : 

where F(T), E[F(7r)} and V[F(v)] denote a total flow time, the expected value and the 
variance of total flow time, respectively. Precisely speaking, we have to write F(ir , W) instead 
of F(v)  and to add the constraint of W E 0 into Eq.(2.9). However, it is not necessary to 
give always such a precise expression if the scheduling problem is specified as a stochastic 
scheduling problem, and it should be rather omitted for simplicity. Eq.(2.9) is included in 
a form of Eq. (2.6), because V[%)] = E [{F(v) - E [F(v)]}2]. 

The set of nondominated schedules to P I  is denoted by N. Jung et al.[9] showed that 
their heuristic algorithm based on a job-interchange method provided the approximate set 
of nondominated schedules very close to the true set of nondominated schedules derived 
through the branch-and-bound method. Therefore, we employ their method to generate 
the set of nondominated schedules to PI. Since t h e  smaller the be t te r  principle holds in 
these criteria, the "preferred schedule" to be selected by a decision maker exists in the set 
of nondominated schedules N. The difficulty is how to select the- preferred schedule from 
among these nondominated schedules. 

Unlike the usual deterministic multiobjective scheduling, we can use a stochastic meaning 
in selecting a preferred schedule from among the set of nondominated schedules in stochastic 
multiob jective scheduling. Therefore, we propose an interactive decision system to help 
a decision maker select a preferred schedule by showing the stochastic meaning of each 
criterion vector value in the above two-ob jective stochastic scheduling problem. First we 
present some new categories related to the set of nondominated schedules N .  
2.1. Upperward 100 a percentile minimum schedule 

The schedule minimizing E[F(n-)] is derived only by focusing on the statistical " mean " 
of the total flow time and it allows the total flow time to exceed the expected value with a 
probability of 50%. However, some managers wish to decrease the excess probability down 
to a smaller value, for instance 10%. Let y be the upperward 100 a percentile, that is, the 
total flow time F(7r) exceeds y with a probability of a. If managers wish to minimize the 
time y, this decision problem is formulated as 
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From our experience of time measurements in a real factory[15], most of human pro- 
cessing times follow Erlang distributions wit h various location and shape parameters, and 
the rest follows a normal distribution. The coefficient of variation varies within tha range 
of 0.05 W 0.40 according to the property of each operation: 0.05 0.20 for easy tasks; 
0.10 0.25 for normal tasks; 0.20 N 0.40 for difficult tasks. According to the central limit 
theorem, a distribution of the sum of independent variables converges into a normal distribu- 
tion as the number of variables to be summed increases as long as the value of each variable 
does not give a large effect on its sum. We can apply this theorem to our case because 
the total flow time is the weighted sum of independent processing times and because each 
processing time gives a small amount of effect on the total flow time itself in usual cases of 
factories. Therefore, we assume that the total flow time follows a normal distribution with 
mean E[F('K)} and variance V[F(7r)], no matter what kind of distribution each processing 
time follows. 

Under this assumption, using the relationship of @(ua) = 1 - a where $ ( a )  is a c.d.f. 
of a standard normal distribution and ua is the upperward 100a% point in the standard 
normal distribution, we can replace g in Eq.(2.10) with E[F('K}\ + ua-\/V[F{7T)}, resulting 
in the following problem P3 equivalent to P2: 

P3 is also equivalent to the problem to minimize the weighted sum of the original two 
objective functions in P1 (since minimizing V[F (v)] is equivalent to minimizing \/V[F01, 
we replace with -\/v[Fol in P I  from this point on). The optimal schedule to this problem 
is called the " upperward 100 a percentile minimum schedule," denoted by ~ ( a ) ,  and it 
can be obtained by searching the nondominated schedules in N, because the weighted sum 
minimization problem defined by P3 gives an element in N if ua > 0. If we set ua = 0( 
corresponding to a = 0.5) in P3, we get the simple problem, min {E[F(v)] \ v 6 II}. 
Since the " upperward 50% point minimum schedule ~ ( 0 . 5 )  " is a solution to P3 with . , 

a = 0.5, 7r(0.5) is also an " optimal schedule to minimize the expected value of total flow 
time E [F (v)T (For simplicity, if 7r (0.5) is not unique, we pick up the one with the minimum 
value of V[F(v)] from such schedules as 7-40.5) so that 7r (0.5) E N )  . These two expressions 
denote the same schedule but the meaning is slightly different, that is, ~ ( 0 . 5 )  is derived by 
focusing on the upperward 50% point. This is important when selecting a preferred schedule 
by considering the stochastic meaning of the criterion vector value. 

2.2. Combined nondominated schedules 
For a given value of ua ( or a), we can obtain ~ ( a )  as a solution to P3. However, this solution 
sometimes results in a large value of V[F(v)], especially when ua is close to zero( or a is 
close to 0.5). If we want to reduce the value of V[F(T)], the upperward l O O a  percentile itself 
cannot always provide a good schedule with a small value of V[F(v)]. Therefore, we need to 
analyze the relationships between the minimization of the upperward l O O a  percentile of the 
tot a1 flow time and the minimization of the variance of the tot a1 flow time under a given ua ( 
or a ) .  This analysis can be implemented by replacing Â£[F(T) with E[F(v)] + udv[F{w)l 
in the original two objective scheduling problem PI ,  resulting in the following: 
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It is noticeable that P I  is a special case when ua = 0 (or a = 0.5) in P4. The set of 
nondominated schedules to P4 is called the set of " combined nondominated schedules," 
denoted by Nc(a).  Obviously, Nc(a) N and Nc(0.5) N. For any TT, in N ,  if there 
is a schedule 71, in N satisfying both V[F(7r,)] < V[F(ri)] andE[F(rj)] + v.adV[F{w,)] < 
E[F(ri)] +ua,JV[F0}, then ri is dominated by the rj. Therefore, except for the nondom- 
hated schedule with the minimum variance, any schedule TT, in A/" becomes a dominated 
schedule when ua is larger than or equal to u&i} defined by 

Using this U&& we obtain the set of nondominated schedules to P4 such as 
-%(a) = \ {ri 1 ~a (ri) < ua, A/'}. 

As a decreases(ua increases), the number of elements in Nc(a) decreases, and when 
a --+ O(ua --+ m), only one element with the minimum vaxiance remains in Nc(a). The 
relationship between Nc(a) and the set of ~ ( a )  is expressed by 

4 4  l u&(a)) > U a ,  ~ ( 0 )  â‚¬A/ CNcfa ) ,  
because Nc(a) includes some schedules that can not be generated by the weighted sum 
minimization method( to obtain a set of solutions to P3 for various values of ua > 0). 

2.3. Upperward 100 a% combined nondominated schedules 
In some cases, managers wish to minimize both y and a, resulting in the following formu- 
lation: 

Under the assumption that the total flow time follows a normal distribution, introducing 
@ (ua) = 1 - a, we obtain another expression of P5 as 

The set of nondominated schedules to P6 is called the set of " upperward 100 a% 
combined nondominated schedules," denoted by Ata, which is also included in N. All the 
elements of .A/" can be obtained by finding "̂{U) for any U(>  0) such that 

V[F(T%))] = max{V[F(7r)] 1 ua(r)  > U, TT E A/'}. 
Therefore, we get the following relationships: 
Na = {va(u) I 0 < U}, or equivalently, Na = {r(a) 1 0 < a < 0.5}. 

3. Selection of the Preferred Schedule 
Since a preferred schedule is included in the set of nondominated schedules, we define an 
initial set of candidates for a preferred schedule as the set of whole nondominated schedules 
Af. Basic idea for selecting a preferred schedule is to reduce the set of candidates considering 
the stochastic meaning of the criterion vector value of each nondominated schedule. 

For an illustrative purpose, consider a 10-job, single-machine problem with random pro- 
cessing time whose mean pi and standard deviation ai are given by pattern 1 in Table 1. In 
this case, we obtained 13 nondominated schedules to the original problem PI as shown in 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Stochastic Multiobjective Scheduling 

Table 1. Input data of h, 0, and Q//^ of processing time of each job 

Table 2. The set of nondominated schedules for the single-machine case 
(pattern 1: " *" denotes the element of Na) 

Table 2, using the heuristic algorithm proposed by Jung et al. [g]. The sets of nondominated 
schedules N, Nc(a) and Na are expressed in Figure 1. In the left-hand-side of Figure 1, 
the set of nondominated schedules to PI, N, is plotted as a series of 0 at the bottom of 
Figure 1. It is obvious that Nc(0.5) = N .  The series of marks D, A and 0 represent 
the sets Nc(a) for a = 0.1, 0.05 and 0.01, respectively. The upperward 100 a percentile 
minimum schedules ~ ( a )  for a = 0.5,O. 1,0.05, and 0.01 are positioned at the right edge of 
the corresponding set Nc(a) in Figure 1. The set ^Va is composed of all the schedules 7r(a)  
for 0 < a <: 0.5, which is also plotted in the right-hand-side of Figure 1, where " No.1 " 
denotes the nondominated schedule No.1 listed in Table 2. The No.4-schedule in Table 2 
cannot become the upperward 100 a percentile minimum schedule for any a, because this 
schedule is dominated by No.5-schedule for uQ. > 2.93(the No.4-schedule is not included in 
N ( a )  for ua > 2.93( or a < 0.017) as shown in Figure 1: compare A with 0) and is not 
optimal for P2 nor P3 when ua < 2.93. 

Two frames corresponding to a = 0.05 and 0.2 are drawn in Figure 1. The outer 
frame drawn, by the dashed line in Figure 1 for a = 0.05 shows that any schedule in 
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Figure 
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. Relationships among the sets of nondominated schedules, N, (a) and Na 

Nc(0.05) \ {7r (0.05)} can not become an upperward l O O a  percentile minimum schedule for 
a >: 0.05. Therefore, these schedules should not be selected as a preferred schedule. If the 
decision maker is more conservative, the lower limit of a can be decreased down to any value 
less than 0.05. Any schedule in A/c(al) \ r(a1) for the specified a1 should be rejected from 
the set of candidates for a preferred schedule. 

The inner frame drawn by the dotted line in Figure 1 for a = 0.2 shows that any schedule 
in A/ \ Nc(0.2) is dominated by ~ ( 0 . 2 )  for a < 0.2. If the decision maker is not so serious 
that the larger variance of total flow time is permitted, the upper limit of a can be increased 
to any value on [O. 2, 0.51. In this case, any schedule in N \ Nc (a2) for the specified 0 2  should 
be also rejected. Finally, we obtain a set of candidate schedules for a preferred schedule as 
{Nc(~2)\Nc(~l)}~{7r(al)} where a1 and a 2  denote the lower and upper limits of a described 
above, respectively. However, in this set, there are still some schedules which cannot become 
the upperward l O O a  percentile minimum schedule for a E [ai, a2], that is, such schedules 
become dominated for some values of a E [al, as]. Therefore, { ~ ( a )  1 a1 < a < a2} should 
be the final set of candidate schedules from which a preferred schedule will be selected. 

If the number of elements included in this set is too small(or large), we recommend 
the decision maker to widen(or narrow) the range of a .  After adjusting the size of the set 
7 r  (a) 1 a1 < a < a2}, the decision maker can select the preferred schedule from among this 
set of candidate schedules by comparing the criterion vector values of all candidate schedules 
each other. This final selection process is not difficult because only a few candidates remain 
a t  this stage. 

We call this interactive system for selecting a preferred schedule the "interactive stochas- 
tic multiobjective scheduling system (ISMSS) ," which is given by the following algorithm. 
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<Interactive Selection Algorithm For Single Machine Case> 
<Step1 > Calculate the sets of nondominated schedules N, using the heuristic algorithm[9], 

and generate the sets of ^fc(a) and Nff from N. Plot them on a computer display as 
shown in Figure 1. 

<Step2> Specify the upper and lower limits of a, a1 < a 5 0 2 ,  as a1 = 0.05 and a 2  = 0.2 
tentatively. Draw the frames corresponding to these limits as shown in Figure 1. 

<Step3> If necessary, adjust the upper or lower limit of a so that there a reasonable number 
of candidate schedules within the frames and so that the range of the upperward l O O a  
percentile corresponding to [al, as] is appropriate(satisfiab1e for the decision maker). 

<Step4> Enlarge the figure expressing the set of { v ( 4  \ 01 5 a < a2}. Select a pre- 
ferred schedule by comparing the vector values of candidate schedules each other. If 
necessary, return to Step 3 to adjust the limit frames of a .  

This algorithm has been coded in the visual-C language. The sample color screen on a 
computer display will be shown in the following section for a parallel machine case. 

4. Extension t o  Parallel Machine Case 
In this section, we extend the ISMSS for a single-machine case to a parallel-machine case. 
In a parallel-machine case, all jobs should be assigned among machines. Therefore, we 
consider the following two cases: (1) the job assignment is given in advance and (2) the job 
assignment is not fixed. In case ( l ) ,  if we evaluate every schedule for individual machine, 
the ISMSS discussed in the previous section can be directly applied to this case, called 
the " individual evaluation." This individual evaluation gives a good performance for each 
machine but does not always give a good result for an "overall evaluation" of all machines 
from the view point of whole system. Therefore, it may be better to evaluate each schedule 
from the latter point of view. In case (2), the individual evaluation of each machine becomes 
so complicated that the ISMSS is extended for only implementing the overall evaluation of 
all machines. 

4.1. Fixed job assignment case 
4.1.1. individual evaluation 
In parallel-machine case wit h given job assignment, the individual two-ob jective scheduling 
problem for machine i can be formulated as follows: 

where S(') denotes the set of jobs already assigned to machine i and fl^(s(')) denotes the 
set of feasible schedules v(') generated from S('). Since the assignment (S('), 7 - - 1 SW) 
is prespecified in this case, the set of nondominated schedules to each machine, denoted by 
N('\ i = 1 M, can be generated by applying the heuristic method (Jung et al.[9]) to the 
above individual problem. 
4.1.2. overall evaluation 
When we want to evaluate the overall performance in parallel-machine case, the overall 
two-ob jective scheduling problem to minimize both the expected value and the variance of 
the total flow time of all jobs over all machines can be formulated as follows: 

P8: rnin{( E& xgl E V[F(T('))] [F (v('))] ) 1 X(') C H(')(s(')), S(') is given, i = 1 - M 
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Since any combination of ~ ( ' 1 ,  i = 1 N M, is feasible to P8, the number of feasible 
schedules, denoted by TT = ( T ~ ( ~ ) , T T ( ~ ) ,  . . . , dM)), becomes too large to search. Fortunately, 
dominated schedules to ~ 7 ^ ,  i = 1 W M, can not become any component of nondominated 
schedules to P8. Therefore, P8 can be equivalently converted into the following: 

P9: min ) I TT(') E / / ( ' )(S(") ,  S(') is given, i = 1 M\ . (4.3) 

Since the objective functions and constraints in P9 are all additive, P9 can be decomposed 
as follows: 

This decomposition form implies that the original P9 can be reduced into some small- 
sized problems, being easy to solve. The overall evaluation algorithm for obtaining the 
set of nondominated schedules to P9 is composed of the following four phases: (1) Find 
a set of nondominated schedules to ~ 7 ( ' ) ,  i = 1 M, individually; (2) Generate a set 
of feasible candidate schedules for a two-parallel machine problem, providing the set {TT 1 
TT = (TT('), d2)), V d l )  E //(l), 'id2) E ^C)}. Find a set of nondominated schedules for 
the set of candidate schedules with respect to the two objectives of E:=, E[F(TT('))] and 
E:=, v[F(TT('))]; (3) Let N' be the set of nondominated schedules to a (k - l)-parallel ma- 
chine problem. Find the set of nondominated schedules to the following k-parallel machine 
problem in a similar way to phase (2): 

(4) Repeat phase (3) until the overall problem has been solved, that is, until the case of 
k = M in phase (3) has been finished. 

The algorithm to generate the set of nondominated schedules in this case is given as 
follows : 

<Generation algorithm for overall evaluation in  fixed job assignment case> 
<Stepl> Generate the set of nondominated schedules to ~ 7 ^ ,  N('), i = 1 "-' M. 
<Step2> Arrange schedules dZ1, I = 1 L('), in A/'(') in order of increasing variance and 

set N = 
<Step3> Set z = 1. 
<Step4> If i = M, stop (the current N is the set of nondominated schedules for overall 

evaluation). 
<Step5> Set N' = N and i = i + 1, and let L' be the number of elements in J\f' so that 

JV'= {C<-.., </}. 
<Step6> Set I - = 1. 
<Step7> Set N = {TT,  1 TT, = (4, K;"), S = 1 L(')} 
<Step8> If l = L', set N = M' and return to Step 4. Otherwise, set I = l + 1. 
<Step9> Set A?= {jr, 1 TT, = (7ri,~ry), S = 1 W L(')}. 
<SteplO> Comparing the elements of 77 with M' in order of 31, 3 2 ,  . . . , ?^(,l, find the new 

set of nondominated schedules N for M' U A/'. 
<Stepll> Return to Step 8 
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4.2. General parallel-machine case 
In general parallel-machine case without fixed job assignment, we only consider the overall 

evaluation as mentioned above. The problem can be formulated as follows: 

P10: min 

where S denotes a set of jobs to be assigned among M machines and S^), i = 1 M, 
represents any decomposition of S such that u;"~ S(*) = S and flEl S(*) = 4,  i = 1 M. 

Ho et al.[5] developed an efficient algorithm to minimize the number of tardy jobs in 
parallel-machine scheduling and Cheng et al. [2] reviewed parallel-machine scheduling meth- 
ods. However, we cannot directly apply their methods to our case which has two objective 
functions including non-additive form. Instead, we reduce the set of feasible schedules to be 
searched below. 

For any decomposition S('), i = 1 M, any combination of w(*) E l$*), 2 = 1 M, 
can be feasible to P10 but all dominated schedules in II(*)can be removed as well as in P8. 
Therefore, P10 can be reduced into the following: 

P l l :  min 
E;"~ E [F ( ~ ( ~ l ) ]  
xFi v[F(T(*))] ) 1 TT(*) 6 N(" (S(*)), i = 1 

Once a decomposition (S('), S(2) 1 - - - Â¥ is given, P11 can be transformed into P9 and 
the set of nondominated schedules to P11 for the decomposition can be derived by using 
the same four phase method as that in the fixed job assignment case. A final set of non- 
dominated schedules to P11 can be obtained by evaluating the whole sets of nondominated 
schedules generated from all possible decompositions of S. However, the number of possible 
decompositions of N jobs to be assigned among M machines is up to MN/M!, requiring a 
lot of computation time to search. Fortunately, as shown in Theorem 1, it is sufficient to 
consider only balanced job assignments where the difference in the number of jobs assigned 
to each machine is one at most. This limitation for job assignments decreases the number 
of job assignments to search into N!/{( [ N / M n  M M!} approximately, where 1x1 stands for 
a maximum integer less than or equal to X. 

Theorem 1 
Consider an N-job, M-parallel machine, stochastic, two-objective scheduling defined 

by problem P10(or P1 l). The whole set of nondominated schedules to P1 0(or P1 l) can be 
generated only by considering all decompositions (S('), , 7 S^*) satisfying uEl S(*) = 
S and 

where Ni  IS(')^, i = l, 2, - - - ,  M. 
(proof) 

Consider first a parallel two-machine case, where Nl and N2 jobs are assigned to machine 
Ml and M2, respectively. Suppose the balance in the number of jobs assigned to these 
machines is not good, that is, N1 > N2 + 1. Letting cri~, be processing time of job Jw 
scheduled at the ith position in machine M,, we obtain the following relationships: 
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where TF means the total flow time summed over two machines and c[l]l = qop. This 
inequality shows that removing a job scheduled at the first position in machine Mi(the 
machine with more jobs) and adding it to the first position in machine M2(the machine 
with fewer jobs) can decrease the total flow time TF, and can also decrease the expected 
value and the variance of total flow time. Therefore, it is sufficient to consider a set of job 
assignment satisfying N2 = \N/2] and NI = N - N2. 

This principle also holds in any pair of two machines for an M(> 2)-parallel machine 
case, that is, it is sufficient to consider a set of job assignments in which the number of jobs 
assigned to each machine differs by one at most. 

(Q.E.D.) 

Even after the number of jobs to be assigned among machines is specified by Eq.(4.7), 
(1) (2) ( M )  there are still many decompositions of jobs, denoted by & = (Sk , Sk , . . . , Sk ), k = 

1,2, . . .. For some decompositions which can not provide any nondominated schedule to P10, 
we can omit the further searching procedure. Fortunately, we can calculate the minimum 
values of cl E[F(~T(~))] and zl v[F(T~(~))] for any Sk by scheduling jobs in order of mean 
processing time and in order of variance of processing time in each machine, respectively. 
For a given Sk, let e k  and v^ be the criterion vector of the point with min^zl  E[F(~T(~))] 
and that of the point with min v[F(T~"^)], respectively. The ideal point IPk whose 
coordinate is given by (the minimum expected total flow time, the minimum variance of 
total flow time), is obtained for Sk by using the coordinates of e k  and vk. If there exists 
either ej or v j  for Sj dominating IPk^ any schedule generated from Sk can not become 
nondominated for P10. In this case, we call "decomposition Sk is dominated by Sj." It 
is better to remove such dominated decompositions from the set of candidates to search in 
advance. 

From this point of view, we propose an algorithm to generate the set of nondominated 
schedules in a general parallel-machine case as follows: 

<Generation algorithm for overall evaluation in  general parallel machine case> 

<Stepl> Determine the number of jobs to be assigned among machines, N1, i = 1 M, 
according to Eq. (4.7). 

<Step2> Set k = 1, D = {l} and EV = (j>, and generate the fc-th assignment, ~ f ) , i  = 
1 M .  

<Step3> Calculate 64, vk, and rPk for S?), i = 1 Af. 
<Step4> If JPk is dominated by some element in W ,  go to Step 8 
<Step5> Set E V  = E V  U {ek ,  vk} and eliminate any element in the new E V  dominated 

by some element in the new EV. 
<Step6> If there is I in D, such that IPi is dominated by some element in EV,  delete all 

such I from D. 
<Step7> Set D = D U {B. 
<Step8> If all decompositions are generated, go to Step 9. Otherwise, generate a new 

decomposition, set k = k + 1 and return to Step 3. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Stochastic Multiobjective Scheduling 2 73 

<Step9> Number the elements in D in order of variance of total flow time of vh from 1 to 
K, where K is the number of elements in D. 

<SteplO> Set k = 1, and N = (b. 
<Stepll> Generate the set of nondominated schedules Nk for S'!), Ã = 1 M ,  by using 

the generation algorithm for overall evaluation in the fixed job assignment case. 
<Stepl2> If there are dominated elements in ^V U Nk, delete them, and rename it N. 
<Stepl3> If k < K, set k = k + 1 and return to Step 11. 
<Stepl4> Stop(the current N is the set of nondominated schedules). 

4.3. Selection of the preferred schedule 
The basic idea for selecting the preferred schedule in the parallel-machine case is the same as 
that in the single machine case. Especially for the overall evaluation, the selection method in 
the single machine case can be used without any change. On the other hand, the individual 
evaluation in the fixed job assignment case requires a slight change as mentioned below. 

We show an example of two-parallel machine case whose input data are given by patterns 
1 and 2 in Table 1 for machines Ml and M2, respectively. The sets of nondominated 
schedules to machines M1 and M2 are shown in Tables 2 and 3, respectively. Figure 2 is a 
computer display expressing the set of nondominated schedules to the parallel-machine case 
and related information as shown in Figure 1 for the single-machine case. At the bottom of 
the left-hand-side in Figure 2, two series of (blue on an actual computer display) denote 
the sets of nondominated schedules: the lower series is for machine Ml and the upper series 
is for machine M2. Both sets have the same minimum expected value of total flow time 
and the same minimum variance of total flow time, but the range and shape of each set is 
different from each other. The two dotted lines in Figure 2 are the limit frames of a for 
machine M1 and the two dashed lines, for machine Ma. The outer and inner limit frames 
of a represent the lower and upper limits of a for each machine, respectively. In the space 
below the graph in Figure 2, the expected value of total flow time(Â£') the standard deviation 
of total flow time(@), the value of a and the upperward l O O a  percentile(E + u r n )  are 
shown for the nondominated schedules corresponding to the lower and upper limits of a. 
The first two rows in this space correspond to machine My, and the last two rows, to machine 
Mi . "F7(or F6)" in this space means that after pushing 'T7(or F6) function key" we can 
do operations related to machine Ml(or M2). The arrow keys "+" and "-+" are used for 
moving up and down the outer frame of a for each machine, respectively. The arrow keys 
" 

" and '' L " are also used for moving up and down the inner frame of a for each machine, 
respectively. On this display, we can move the outer and inner limit frames of a by pushing 
corresponding "arrow key" on a key board individually after pushing either "F7 function 
key" for machine Ml or "F6 function key" for machine My,. These frames should be moved 
so that the number of nondominated schedules within the upper and lower frames should 
be sufficiently small and so that the range of a should be similar to each other between two 
machines. In this case, the resulting frames are selected as 0.0102 < a < 0.5000 including 
three nondominated schedules for machine Ml and 0.0229 < a < 0.2420 including eight 
nondominated schedules for machine M2. 

After pushing "F6 function key" and "F2 function key" successively, the enlarged display 
for machine M2 appears as shown in Figure 3. At the bottom of the left-hand-side on this 
display, eight nondominated schedules within the limit frames of a are expressed by a series 
of (blue on an actual computer display), and three upperward l O O a  percentile minimum 
schedules are expressed by a series of (red on an actual computer display) at  the top on 
the left-hand-side and also on the right-hand-side of the same display. If there are some 
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No. 
I*  
2 * 
3 
4 
5 
6* 
7 
8 
g* 

10 
11 
12* 
13 
14 
15 
16* 
17 
18 
19* 
20 
21 
22 
23* 
24* 
25 
26 
27 
28* 
29 

32 
33* 
34 
35 
36 
37 
38 
39* 
40 
41 
42 

Table 3. The set of nondominated schedules for the single-machine case 
(pattern 2: " *" denotes the element of U" and JV[F] denotes Jv[Fo\) 

- 
No. 
43 
44 
45 
46* 
47* 
48 
49 
5 0 
5 1 
52 
53* 
54 
5 5 
56* 
57 
58 
59 
60 
61 
62 
63 
64 
65* 
66 
7 

68 
69 
70 
71 
72 
73 
74 
75* 
76 
77 
78 
79 
80 
81 
82 
83 
84 - 

No. 
85 
86 
87 
88 
89* 
90 
91 
92 
93 
94 
95 
96 
97* 
98 
99 

L O O *  
101 
102 
103 
104 
105 
106 
107 
108 
L09 
110 
111* 
112 
113 
l. 14 
115 
116* 
117 
1 8 *  
119 
120" 
l 2 F  
122 
123 
w 
125' 
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Figure 2. Computer display of the set of nondominated schedules in parallel-machine case 

Figure 3. Enlargement of nondominated schedules within the limit frames of a 

?inE. E -TV 7110 555 tlin.P: E -TV - 8610, 313 
in: E : (E' -TV) - ( ~~~"336) nin.m. (E' 07) - ( 7250, 313) 

Figure 4. Final computer display for selecting a preferred schedule 
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upperward 1 O O a  percentile minimum schedules within the frame, a decision maker will 
not select the nondominated schedules which cannot become the upperward l O O a  percentile 
minimum schedule as a preferred schedule. Therefore, the candidate schedules for a preferred 
schedule are reduced into only three nondominated schedules at this searching stage. 

From this stage, pushing "F3  function key," we proceed to the last stage for selecting a 
preferred schedule as shown in Figure 4. On this display, the bold arrow expresses one of 
candidate schedules and the corresponding data are given at the top of the bottom space, 
in which the second and third rows show the criterion vector values of the two minimum 

respect to the expected value and variance of total flow time at  machines My, 
pectively. Pushing "arrow key" moves the bold arrow on the display one by one. 

It is not difficult for the decision maker to select a preferred schedule comparing data with 
each other on the display, because the set of nondominated schedules are reduced into such 
a small set at this final stage. 

If necessary, we can go back to the display immediately before the current one by pushing 
'F4 function key" and can go back to the initial display(Figure 2) by pushing "F1 function 
key. " 

The ISMSS algorithm for the individual evaluation in a fixed job assignment, parallel 
machine case is given as follows: 

<Interactive selection algorithm for individual evaluation in  parallel machine 
case> 

<Stepl> Calculate the set of nondominated schedules A/"^), i = 1 N M, applying the 
heuristic algorithm[9] to each problem defined by P ~ ( z ) ,  i = 1 M.  Generate the 
sets of A/";') (a) and A/'"(') from A/'('), 2 = 1 M, and plot them on a computer display 
as shown in Figure 2. 

<Step2> Specify the upper and lower limits of a, &) <: a < a t ,  i = 1 M ,  as a '  = 0.05 
and a! = 0.2, i = 1 M ,  tentatively. Draw the frames corresponding to these limits 
as shown in Figure 2. 

<Step3> If necessary, adjust the upper or lower limit of a individually so that there are a 
reasonable number of candidate schedules within the frames in each machine, and so 
that the range of the upperward lO0a percentile corresponding to [ay1, ay], i = 1 
M, is appropriate and not far different from each other. 

<Step4> Enlarge the figure expressing the set of {ir(')(a) \ a < a < S], i = 1 M, 
as shown in Figure 3. Select a preferred schedule by comparing the criterion vector 
values of candidate schedules displayed in Figure 4. If necessary, return to Steps 2 
and 3 to adjust the limit frames of a. 

The ISMSS algorithm for the overall evaluation in the parallel machine case is the same 
as that for a single machine case with N obtained by the proposed generation algorithm for 
overall evaluation. 

5. Conclusions 
How to select a preferred schedule from among a lot of nondominated schedules is one of 
difficult problems in multiobjective scheduling. This paper proposed an interactive decision 
system, called " ISMSS," to select a preferred schedule in the Stochastic Multiobjective 
Scheduling Problem (SMSP) with random processing times . Since the relationships between 
the expected value and the variance of the total flow time can be represented by the up- 
perward l O O a  percentile, some new categories of nondominated schedules were presented 
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and used in the ISMSS, where the stochastic meaning of the upperward l O O a  percentile 
helps shop-floor managers select the preferred schedule from among a lot of nondominated 
schedules. In parallel-machine case, a heuristic method was proposed for generating the set 
of nondominated schedules on the basis of the heuristic algorithm proposed by Jung et al., 
and the ISMSS for a single-machine case was extended to the parallel-machine case. Some 
numerical examples were shown to demonstrate the effectiveness of the proposed system. 
This method can be widely applied to the other stochastic multiobjective problems. 

The algorithm proposed for the general parallel machine case is not elaborated so well 
that the case with a lot of nondominated schedules cannot be solved not only because of 
the computation time problem but also because of the memory size problem. However, in 
a real situation, it is not necessary to generate the exact set of nondominated schedules 
because many schedules with the same values of performance measures are generated in 
the set of nondominated schedules for the general parallel machine case. Therefore, we can 
avoid an unnecessary effort for generating such schedules by removing some kinds of job 
decompositions to search, saving a lot of computation time and memory capacity. This task 
remains as one of our future works. 
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