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Abstract In this paper, an optimal search-and-rescue operation maximizing the expected reward for a 
survivor with a conditionally deterministic motion and with a random lifetime is investigated. Necessary 
conditions for the optimal distribution of the searching effort and the optimal stopping time of the search 
are derived and the meaning of the conditions for the optimal plan are elucidated. To show the properties 
of the optimal search plan, several numerical examples are presented and special cases and generalization 
of the model are also discussed. 

1. Int roduc t ion 
In search-and-rescue operations (abbreviated as SAR) on the rough sea, i t  

takes considerable time lag from an outbreak of shipwreck to starting of SAR 
operation usually and the survivor (called the target, hereafter) has been drifted 
away a long distance before the arrival of the searcher on the scene. Furthermore, 
considerable errors on the reported point of the distress and on the navigation of 
the searcher in the rough sea cannot be avoided. Hence, the search area may be 
expanded broadly and the l i e of target comes to a crisis. The searcher must find 
quickly the target in alive and a prompt and effective SAR operation is required. 
On the other hand, the searcher must prevent a duplicate distress on himself in 
the rough sea. Therefore, the search operation mentioned above is characterized by 
three factors: the moving target, the mortal target with a random lifetime and the 
prevent ion against a critical risk of the searcher. The survivor search problems 
have been studied by several authors. Stone [71, Nakai [51, Hohzaki and Iida L21 
investigated optimal search for a stationary target with a random lifetime and 
Disenza & Stone [l1 formulated the search for a mortal and moving target as 
a Markov chain defined on states of the target and proposed an algorithm to 
calculate the optimal distribution of searching effort maximizing the detection 
probability of the target. However, we cannot find any study dealing with the 
three factors stated above. In this paper, we consider the searcher' S risk as 
his searching cost and formulate the search problem as a non-l inear programming 
problem with the expected reward criterion. The expected reward is defined 

xpected value gained by detection of the target being alive minus the 
searching cost. Here, the target value and the search cost are not 

necessary to be the cost expressed in a monetary unit. Any measure is acceptable 
if i t  can determine quantitatively both the importance of the successful SAR 
and the risk endured by the searcher. For example, if one accepts the view 
that the lives of the target and the searcher should be considered equally, 
then unit value is assigned to the target and the searching cost is defined by 
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the probability of the searcher being lost at the rough sea per unit time. In 
any way, by setting the target value and the searching cost, we can define the 
expected reward as the measure of effectiveness and the model of SAR operation 
with the expected reward criterion is formulated. 

2. Assurptions and Formulation of the model 
2.1. Assumptions of the model 

In order to formulate the model, we assume the following assumptions of the 
search process and define system parameters as follows. 
(1). The target space consists of discrete cells:{i,i =l,~,m}, and the time space 

consists of discrete time points: {t, t =0,1,-,JVL where N is the upper limit 
time of searching effort given to the searcher. The shipwreck is broken out at 
t = 0 and the search is begun from t = to. 

(2). It is assumed that there are finite number of possible paths on which the 
target is drifted. Let idt) be the cell of the target being at t on path k. 
(Cell L(t) will be denoted by <kt> in subscript.) Then the path k is defined by 
a set of sells : k = {ik(t), t =0, l,---} and K = {k}. The target is drifted on 
path k with probability PA, S APA = 1, and {pk} is assumed to be known by the 
searcher. (This rule of the target motion is a special case of the conditionally 
determinis tic motion defined by paths. ) 

(3). A probability of the target being alive on the path k at the initial time 
is denoted by Q. Oc) and a death probability of the target in cell i per unit 
time is given by a d ) .  We assume the death of the target is independent in each 
time and cell. 

(4). Let <b i(t) be the searching effort allocated to cell i at time t, and the 
search plan is denoted by @ = {<b i(,t), t=to, -, T, H, ---,m}, where T is the 
stopping time of the search: to 5 T 5 N. 

(5). The conditional detection probability by 4 i(t) given the target being 
in cell i at time t is assumed to be given by the random search formula [61 : 
l-exp(-a,-& At)), where the detection rate ai is assumed to be constant irre- 
spective of the history of the past search and the state of the target being 
alive or not. 

(6). The value of a live target detected at t is R(t) 0 0) and R(t) is assumed to 
be a decreasing function of t. Here, we assume that the target value is zero if 
the detected target has died. 

(7). The unit cost of searching effort in cell i is denoted by Ci. The total 
searching cost {CO(~, t = to, -",N} is given to the searcher in advance of the 
search. We assume that C O W  is continuously divisible in arbitrary when it  is 
allocated among cells. 

(8). The measure of effectiveness of search plan is assumed to be the expected 
reward which is defined as the expected value gained by detection of the live 
target minus the expected searching cost until stopping of the search. The 
search plan { Q ,  7} is called optimum if it gives the maximum expected reward and 
is denoted with superscript *. 

2.2. Fonul at ion of the search problem 
Let's consider a target drifting on path k. Since this target is in cell 

ikW at t and is searched by @<kt>(t), the non-detection probability P(t,k) 
until t and the detection probability p(t, k) at t are given as follows. 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



K. Iida, R. Hohzaki & K. Inada 

t -  1 

~ ( t ,  k) = { l - e x ~ ( - a < ~ t > < & < k ~ > ( t ) ) } e x ~ ( -  S a<kh>@<kh>(h)). 
h= I o  

The probability of this target being alive at t is given by 

~ ( t ,  A) = W '?!I {l-dik(h))t. 
h= t o  

( 2 )  

The searching cost C(t, <&l used at t and the cumulative searching cost D(t, Q )  
until t are presented as follows. 

D(t, a) = S S ci<& /(h). 
h= t o  /=l 

Therefore, the conditional expected reward G(̂,T\ k) given the target path k is 
presented from Eqs. (l), (2) and (3) by 

G(@, TIB = S ~ ( t ,  k) {~(t, k)~(t)-~(t, m} - P(r ~)D(T, a). 
t= t o  

By calculating the weighted sum of G(@, Tk) by pk9 we have the expected reward 
G(@, T )  as follows. 

On the other hand, the search plan {!P, T\ stated above is restricted to the next 
constraint S. 

C( t, $1 i CO (t), t = to, S - - ,  N, (5) 
@i(t) 2 0, t = to,-,T, i = 1,--*,H, 
to 2 T i N .  

Therefore, our problem is formulated as a non-l inear programming problem to find 
the optimal search plan which maximizes the expected reward G(@, T )  given by Eq. 
(4) subject to the restrictions (5). 

3. Conditions for the optimal search plan 
Necessary conditions of the optimal search plan will be derived by two steps. 

First, a conditionally optimal distribution of searching effort @ T*={@ j*(tl D} 
given the stopping time T of the search will be derived, and then, using aT* 
for each T, we will find the optimal stopping time T* of the search. 
3.1. The conditionally optimal distribution of searching effort 

To simpl ify expressions, we define the following notat ions. 

P(t, kl T )  and FAT, k) are the non-detection probabilities of the target in [to, tl 
and [ttl, TL respectively, and p&, k) is the detection probability at s in the 
search [ttLsI whena searchplan {d)i(tlD} is used. Dt(s,QT) is the cumulative 
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searching cost used in [ttl, S]. M k ,  @ T) is the conditional expected gain given 
that the target selects path k and is detected at t. The first term in the r.h.s. 
of Rt (k, @ 7) given by Eq. (6-5) is the expected value gained by the searcher when 
he detects the target at t, and the quantity given by summation of the second and 
the third terms is the expected risk of the search which is prearranged in [ttl, Tl 
if the target is not detected at t and this term is interpreted as the saved risk 
by the detection of the target at t. Therefore, Rt (k, @ T) is considered as the 
value which motivates the searcher to search in cell i at t. 

Using terms defined by Eqs. (6)' S, the next theorem is presented. 

[Theorem 11 Necessary condi t ions of the condi t ionally optima1 distribution of 
searching effort @ r* = { <& i* (t l D 1 given the stopping time T ( 5  JV) are that, 

L[ S p k P ( t - l , ~ a i e x p ( - a i < & i * ( t l D ) l ; t ( k , @ r * ) - c i S  ptP(t-1,k)l 
Ci k<=~(t, i) ~ E K  

= (9 ,U (t), ( the signs 0, =) and (=, 2) are same order. (7) 

for all i and t = to, -, T, where B ( t ,  i) = {k\ ik(t)=i} : the set of paths passing 
i at t and ,U (t) is a non-negat ive Lagrange multiplier determined by the const- 
rain t given by Eq. (5). 
If G(@ T, T )  is a concave function of @ T, the conditions mentioned above is 

the necessary and sufficient conditions for the optimal solution. U 

(Proof) Necessary conditions (7) and (8) are derived by Lagrange7 S method of 
indeterminate coefficients. By setting slack variables and its mu1 tipliers corre- 
sponding to the inequality constraints (5), Lagrangean is defined, and then, 
Lagrangean is differentiated by <& i(tI D, slack variables and its multipliers, 
and they are set to zero. Then, eliminating the slack variables, we have Eqs. (7) 
and (8). Here, if the objective function G(@T,D is a concave function of 4jT, 
the conditions obtained above can be proved to be the necessary and sufficient 
condi t ions by direct appl icat ion of the Kuhn-Tucker Theorem. (a. e. d. ) 

If the optimal search at t should not use the total searching cost exhaus- 
t ively; CO (t) > C(t, @ T) (referred to the partial search, hereafter), we have 
p(t) = 0 from Eq.(8). On the other hand, if n(t) > 0, C O W  = C(t,QT*) is 
derived, i. e., the optimal search should use all the total search cost (called the 
exhaustive search). By decomposing Ea. (8) by the exhaustive search and the partial 
search, Theorem 1 is rewritten as follows. 
[Corollary 1-11 Necessary condi tions of the condi tionally optimal distribution 

{<& i*(t\T)} being the exhaustive search at t are that Eq. (7) for all i and 
c(t? @ T*) = CO (t)? (9) 

and then, ,U (t) is determined by Ea. (9). 
For the optimal search being the partial search, if (!) i* (t \T) >(=) 0, 

where p)/ is the posterior probability of the target path k at t given by 

(Proof) If the optimal search is exhaustive at t, Eq. (9) is obvious from the 
definition of the exhaustive search and Eq. (8) in Theorem 1 is interchanged by 
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Eq. (9) and f i  0) is determined by Eq. (9). If the optimal search is the pertial 
search, n ( D  =O from Eq. (8) and Eq. (10) is easily derived from Eq. (7) by setting 

(t)=O and applying Eq. (11). (q. e.d.) 
3.2. The optimal stopping t ime of the search 

Here, applying the conditionally optimal search plan QT* given by Theorem 1, 
we consider a search problem with a variable T and investigate an optimal stopping 
time To which maximizes G(@ T*, T) with respect to T subject to the constraints (5) : 
To = arg m a x ~  G(QT*,'!). Then, the optimal stopping time T* is obtained by 

Y = min {To, M .  
As for To, the next theorem is established. 

l A necessary condi t ion of To maximizing G( Q T*9 T )  is given that 
if T 5 0 )  To9 

pkT-l {l-ex~(-a<~T^<~T^ (Tl D)} Q(T, k) R(D 
k â ‚  

Z) pZ-lC(T, @<kn*(Tl D), 
k E K  

(12) 
where the signs ( 5 ,  >) in "if clause" and ( > , S )  in Eq. (12) are applied in 
same order and p k T 1  is the posterior probability of the target path defined 
by Eq. (11). D 
(Proof) Let's consider the c a s e 9  i P. We set T = To and G(@ T*, T )  is 

compared with G($T-l, T-l), where a search plan @T-i is defined as a plan which 
truncates QT* at T-l. Then, we have the next relation. 
G(Q T*, n - G(̂ T-l, T-l) 

= Pkp(~-l, k) {(l-exp(-a<kn@<km* (Tl 'rÃˆ Q(T, k) R(r)-C(T, @<AD* (Ti T ) ) }  2 0. 
kâ‚ 

The last inequality is deduced from the fact that T (= P )  is the optimal stopping 
time by the assumption stated above. From the above, we have the relation (12). 
Next, let' S consider the case : T > To and we define the conditional expected 
reward Gt(GT9 T,k) in [t, rl given that the search Q T  for the target selecting 
path k does not succeed in detection until t as 

* 
Here, setting T = To t 1, we define Q as a search plan such that @TO in [to, T-l 

(= D] and @ i*(TOITo) at t = T (= Ptl), then we have the next relation. 

The last inequality is deduced from the definition of the optimal stopping time To. 
From the above, we have Eq. (12). (a. e. d. ) 

We have obtained the conditionally optimal distribution of searching effort 
<!> T* and the optimal stopping time To by Theorems 1 and 2, respectively. From 
these theorems, the optimal search plan (Q*, D is determined by 

( Q * .  F) = (L*, min {TO, M ) .  
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3.3. An algorithm to calculate the optimal search plan 
Unfortunately, we cannot solve analytically the simultaneous non-linear 

equations given by Eqs. (7) and (81, hence, we must calculate them numerically. As 
for the numerical solution of this type equations, a sequential approximation 
method cal led the Foreward-and-Backward algorithm (abbreviated as FAB algorithm) 
can be applied. This algorithm was presented by Washburn L91 to calculate the 
optimal distribution of searching effort maximizing the detect ion probability of 
a moving target with the constraint of total searching effort. In this problem, 
the constraint (5) for the total searching effort is satisfied in equality for 
the optimal solution. However, in our problem with the reward criterion, we must 
consider Eq. (8) since the constraint (5) holds sometimes for inequality. Hence, 
the FAB algorithm is modified by using Corollary 1-1 as follows. 

In FAB algorithm, the searching effort {A i(tI T), i =l, - o - , ~ }  at t is calculated 
by assuming that the effort A i(r IT)' S, r +  t, except for A i(r I D' S, T =  t, are 
a1 l known (approximated by the last calculation in FAB). Then, if the exhaustive 
search is optimal, we have the next equation from Eq. (7). 

If A i*(t\T) > 0, Liexp(-aiA i*(tI D )  - B t  = /L (t), (1 3) 

where Kti = A S, ,) P&-l, BRt(k, r*) and Bt = S ptP(t-l, Id. Ci k e ~  ( t  ~ S K  

Here, defining a notation [XI+ by [XI+ = X, if X > 0, and [XI+ = 0, if X 5 0, we 
have A /Oil) from Eq. (13) as 

In this case, since Eq. (9) holds, A j(t\T) given by Eq. (14) are substituted into 
Eq. (9) and we have 

/L (t) is solved numerically from the above equation and A i* (t \T) is determined 
by Eq. (14). 

On the other hand, if the partial search is optimal, then Eq. (10) holds and we 
have the next equa t ion. 

1 ,((ID = 7 [log (̂)l: 
Since j ( t  \T) at t is obtained by Eqs. (14) and (15) or (16), renewing Kt+ii, 

and by 6 D, the calculation of FAB proceeds to the next time point tt1 
(forward calculation). When t = T, {Aj(t\T),i=l,-â€¢-,ia,t=to,---, is compared with 
{A j(tID} obtained by the previous iteration and if A j(t\T)'s do not converge in 
a prescribed precision, the same calculation as stated above is repeated from t 
= t o  to T (backward calculation) by renewing K u  and B t  by the last 4> i(t\T). If 
{A i(tl D} converges, Eq. (12) is checked. If T 5 TÂ¡ set T = Ttl and 4 D is 
calculated by the FAB algorithm. If T > To, we set F = T-l and A i*(tlT) = 
6 (t 1 T-l) and the FAB calculation is completed. The solution obtained by the 
FAB algorithm stated above is optimal if the objective function (K&, D is a 
concave function as such cases discussed in Â 4. On the other hand, if G(%, D 
is not concave as such a case that the target paths intersect with each other, 
the FAB algorithm gives only an exremal value. 

4 The optimal search plan when the target paths have no intersection 
In almost cases of the natural world, we may assume that the drifting paths 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



252 K. Iida, R. Hohzaki & K. Inada 

of the target have no intersection (called separable). Then the next theorem is 
es tab1 ished from Theorem 1. 

[Theorem 31 If the possible paths of the target have no intersections, the 
objective function G ( & = ,  T )  is a concave function of {d)  i(tIT)} and Theorem 1 
gives the necessary and sufficient conditions of the conditionally optimal 
@ T*9 then the FAB algorithm stated before gives the optimal solution. In this 
case, Eqs. (7) and (8) are simplified slightly as follows. 
If <b i* ( t \T)  >(=) 0 for i = i\(t), 

(Proof) If the possible paths of the target have not any intersections, the 
set of path B(t, i) = { k  I ik(t)=i} has only one element at most, and therefore, 
differentiating twice G ( @  T, T )  with respect to <f> i(t), we have 

Therefore, Hessian of G($ T9 7) is obtained as follows. 

Let a row vector d) be (d )  i (t), i=l, a - ,  n) and its transpose be <b '. The concavity 
of G(QT, T )  with respect to d) is proved by showing Off@ 2 0 for all d) (# 0). 
From the above, we can easily calculate c^ ffd) ̂ = S i g(t, i) d) ,-'(t). Here, we 
examine the sign of g(t, i) defined by Eq. (18). Since Q(h, k) R(h) is strictly 
decreasing, Rdk, @ T) in Eq. (18) is proved to be positive as follows. 

Hence, if there exists k, i = ik(t), then g(t, i) < 0, and otherwise, g(t, i) = 0 
for any (t, i) from Eq. (18). Therefore, <Wt = S i g(t, i) d) i2(t) 5 0 is proved 
and G(@ T, T )  is a concave function of d ) ,  and Eq. (17) gives the necessary and 
sufficient conditions for the conditionally optimal @ T* by Theorem 1. (q. e. d.) 

In many cases of local SAR operations, not only the target paths are separable 
but also the conditions of the environment may be uniform among cells. Then, the 
system parameters: ai, Qo(k), g(i), Cj? do not depend on cell and these are denoted 
by the same notations omitting the subscript. In this case, Q( t, k) is denoted by 
Q(t) since i t  depends only on time t and the search efficiency decreases as time 
elapse, because Q(t)R(t) is a strictly decreasing function of t by the assumption 
(61, c and a are constant and the target paths have not any intersect ion. Therefore, 
the exhaustive search is optimal in the early stage of the search except the last 
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time point (the partial search at the stopping time point is neglected hereafter). 
Here, we set the next constraints of the problem instead of Eq. (5). 

C S (* i (0 = C(t, Q) = CO (t) , t = to, ' " 7  T- 1, 
/ = l  

CS (*,(D = C(T7Q) S CO(T), 
i= 1 

(b i (t) 2 0, t = to, -, T, i = l, * S - ,  m, 
to 5 T ^ N .  

In this case, the expected reward is presented as follows. 

G(̂ >,T) = S  p k [ g  p(t,B{Q(t)R(t) - g  Co(h)> - P(T.k)D(T, @)l. 
kâ‚ t =  t o  h= t o  

(20) 

The next theorem is established to the problem maximizing G(̂ >, T )  given by Eq. (20) 
subject to Eq. (19). 
[Theorem 41 If the target paths have no intersection and the system para- 
meters a, Qo, Q, and c do not depend on cell, the uniformly optimal search 
plan maximizing the detect ion probability always in the time interval such 
that CO (h) = D<t, Q) S Q(t) R(t) is also the optimal search plan which 

h= t o  

maximizes the expected reward. The optimal stowing time T* of the search is 
determined uniquely by QV-l)R(Y-l) > D(F-l, Q) and Q(F)R(F) 5 DO*, G), 
if Q(to) R(to) > D O o ,  Q). If 0 < QOo) R(to) 2 D(to, Q), the search should be 
stopped by the partial search at to and if Q(to)R(to) = 0, the search should 
not be begun. U 

(Proof) 
the r. h. s 

G(̂ >, T )  

The term 
target is 
The term : 
consider 

Since the operator E's with respect to k and t in the first term of 
of Ea. (20) can be exchanged each other, Eq. (20) is rewritten as follows. 

= [{Q(t) R(0-D(t. Q)} S ptp(t7 B1 - D(T, Q) S pkP(r, B]. (21) 
t= t o  k'sK kâ‚ 

in the r.h.s. of the above: {Q(t)R(t)-D(t, Q)} is the reward when the 
detected at t and is a strictly decreasing function of t from Q o R W  >O. 

dkp(t,k) is the detection probability of the target at t. Here, we 
the case in which the target paths do not intersect with each other 

and the environment is homogeneous. Then, we can define the target space by the 
paths {k} instead of the cells {i} and the moving target in {i} is changed to the 
stationary target in { k } ,  and therefore, the search becomes the stationary search. 
On the other hand, in the stationary search, i t  has been proved that there exists 
a search plan called the uniformly optimal plan L61 in which the searching effort 
is distributed to maximize the detection probability S kpkp(t,k) at each time 
point t in the time interval such that {Q(t)R(t)-00, Q)} > 0. This plan not only 
maximizes the first term in in the r. h. S. of Eq. (21) but also minimizes the second 
term : D(T, Q) S kpkf<T, k), since S k~kf(~, k) is the non-detection probability 
of the target in the search. Therefore, the uniformly optimal search plan maxi- 
mizes the expected reward G(̂ >, T ) .  Hence, we have 

max? G(Q9T) <? max? S kpkp(t7k) at each t, subject to Eqs. (19). 
As for the optimal stopping time of the search, since {Q(t)R(t)-D(t, a)} is 

strictly decreasing, G(̂ >, T )  decreases if the search is continued after t such 
that {Q(t)R(t)-D(t, G)} < 0 from Eq. (21). Therefore, the optimal stopping time is 
the time T* determined uniquely by Q(Y-l) R(F-l) > ?-l, $1 and Q(F)R(T*) 5 
D(Y, Q) if Q(to)R(to) > D(t0, Q), and the search should be stopped at to by the 
partial search if D(to7 Q) 2 Q(to) R(to) > 0, and the search should not be begun 
if Q( to) R(to) = 0. (q. e. d. 
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5. Numerical Examples 
In this section, several examples are analyzed to see the properties of the 

ptimal search plan. 
Suppose there exists four possible drifting paths of the target as shown in 

Fig. 1. Environment in cells for the survivor is severer in order (Cells 1 and 2). 
(Cell 3), (Cell 4) and the death rate o(i) grows larger in this order. The total 
searching cost, the target value, the unit cost of searching effort and the 
parameter of the condi t ional detect ion probabi l i ty are constant regardless of time 
point or cel l and Q. (k) = 1 is assumed. We set a primary case : Case 1, and then, 
to see the sensitivity of the system parameters to the optimal search plan, other 
cases are analyzed by varying parameters of Case 1. 

Fig.1 Possible drifting paths of the target 

(1). Case 1 (the primary case) 
Probability distribution of target path: pk = 0.25, k = 1,---,4, 
Initial survive probability on path k : Q. (k) = 1, k = l, ---, 4, 
Distribution of death rate : {a(i)} = {O. 2, 0.2, 0.4, 0.61, 
Starting time of the search: t o  = 1, 
Constraint of the total searching cost : CO (t) = 1, t = 1,2, ---, 6, N = 6, 
Unit cost of searching effort : ci = 1, i = 1, ---, 4, 
Detection rate : a j  = 1, i = 1,-",4, 
The value of the l ive target : R( t )  = 7 ,  t = 1,2, ---, 6. 

(2). Case 2 (the immortal target) 
Death rate g ( i )  is changed to q(i) = 0 for all i and other parameters are 
same as Case 1. 

Table 1 shows the optimal search plans for Cases 1 and 2. In Case 1, i t  
should be noted that Path 4 is searched at the first time t = 1 only, and the 
optimal plan is the exhaustive search at t = 1 and the partial search at t = 2 
and the optimal stopping time is F = 2. On the contrary to Case 1, in Case 2 
(the search for the immortal target), the partial search is conducted at t = 1,2, 
and thereafter, the exhaustive search is continued until the end of the search 

is may be explained by the fact that the posterior distribution of 
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Table 1 The optimal search plans for Cases 1 and 2 

Case No. 

Changed 
parameter 

i \t 

1 
Q *  2 

3 
4 

n( t) 

Basic case il ~(j) = 0, 1=1,-,4 
(Immortal target) 

2 1 Stopped by the restriction if = 6 

the target is more equalized at t = 3, - , 6  than that at t = 1,2, and by the 
assumption of the exponential detection function. In this case, since the target 
does not die, the search effort is concentrated to the intersections of paths 
and is balanced, and after t = 5, the effort is distributed uniformly since the 
posterior probability of the target becomes uniform. The expected reward is 
three times of Case 1. As shown in these cases, i t  should be noted that the 
optimal search plan and the expected reward are affected seriously by the lifetime 
of the target. 

Next, we set Cases 3 - 7 exchanging system parameters of Case 1 as follows. 
(3). Case 3 : Sensitivity of the exponential detection rate 

The exponential detection rate a = 1 in Case 1 is changed to a = 2. 
(4). Case 4 : Sensitivity of the target value 

The value of the live target R = 7 in Case 1 is changed to R = 10. 
(5). Case 5 : Sensitivity of the unit searching cost 

The unit cost of searching effort c = 1 in Case 1 is changed to c = 2. 
(6). Case 6 : Sensitivity of the total searching cost 

The total searching cost COO) = 1 in Case 1 is changed to CO ( t )  = 2. 
(7). Case 7 : Sensitivity of the path distribution of the target 

The uniform distribution of the target path pk = 0.25 for all k in Case 1 
is changed to {pk} = {O. 1,O. 2, 0. 3, 0. 41. 

The optimal search plan of Cases 3 7 are shown in Table 2. As shown in Case 
3 of Table 2, the exponential detection rate a is very sensitive to both the opti- 
mal search plan and the expected reward. Since the target is detected easily 
compared with Case 1, the search becomes active and the total searching effort 
applied during the search is one and half times of that in Case 1 and the stopping 
time is prolonged to T* = 4. In Case 4, since the target value is large, the 
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search is activated as similar to Case 3. However, in the same manner as Case 1, 
the target with a short lifetime on the path 4 is searched at the beginning of 
the search only. In Case 5, since the unit cost of the searching effort is expen- 
s ive, the search becomes conservative. The total effort appl ied is diminished to 
one quarter of Case 1 and only the cells being the intersection of the target 
paths are searched. It is interesting that the result of Case 6 is almost the 
same as Case 1, i. e., the optimal search plan is not affected by the restriction 
of the total searching cost in this case. In Case 7, since the target selects the 

: Path 4 with high probability, the search effort is concentrated to 
he beginning of the search, and then, Paths 2 and 3 are searched at t = 

and the search is stopped. Path 1 is neglected since its probability is very 
smal l to search. 

Table 2 The optimal search plans for Cases 3-7 

Case No. 

Case No. 

Changed 
parameter 

i= 1 
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6. Discussions 
In this section, meanings of the conditions for the optimal search plan are 

elucidated and generalizations of the model and special cases are discussed. 
6. 1 .  Interpretation of the conditions for the optimal search plan 
1. The conditionally optimal distribution of searching effort 

The conditions for the optimal effort distribution given by Theorem 1 are 
explained as follows. 

Let's consider Eq. (8). This condition shows the complementary relation between 
u(t) and the total searching cost Co(t). If the optimal search at t should not 
use all CO (t) (i. e., the partial search is optimal), ,U (0 is zero. On the other 
hand, if fi (0 > 0, the search should use all CO (t) at t (i. e., the exhaustive 
search is optimal). As stated later, ,U (t) is a balance level of the ratio 
of the marginal expected reward vs. the unit cost when the exhaustive search is 
conducted. The meaning of fi(t) is elucidated as follows. 

Suppose ,U (t) > 0 and the exhaustive search is optimal. Here, let' s consider 
the meaning of the term in Eq. (7). The term in the 1.h.s. of Eq. ( 7 ) ;  

is the increment of detect ion probability when the searcher adds unit searching 
effort to <& i * ( t \ T )  in cell i at t given that the target selects path k E B(t, i) 
and is not detected until t. On the other hand, as mentioned before, the term 
&(k, iP in Eq. (7) given by Eq. (6-5) is the conditional expected gain given 
that the target path is k B(t, i) and is not detected until that time. The 
summation with respect to k B(t, i) of M k ,  iP multiplied by Eq. (22) is 
the marginal expected gain at t. On the other hand, the term; Ci S ~c~kP(t-1,k) in 
Eq. (7) is the expected searching cost of unit effort used at t mentioned above, 
and the residual value obtained by the marginal expected gain minus the searching 
cost means the expected marginal reward at t. Hence, the l. h. S. of Ea. (7) is 
the ratio of the marginal expected reward versus the unit searching cost. There- 
fore, Eq. (7) is interpreted as that, if cell i is searched at t, the amount of 
the searching effort should be determined in such a way that the ratio of the 
marginal expected reward vs. the unit cost mentioned above is balanced to a 
level ,U (0 0 0) among the cells being searched at t, and if the searching effort 
should not be allocated to cell i at t, cell i does not have cost-effectiveness 
larger than fi (t). 

Next, we consider the case in which the partial search is optimal (,U (t)=O). 
In this case, Eq. (10) in Corollary 1-1 holds by substituting ,U (t)=O into Eq. (7). 
As similar to Rt(k, @ the l. h. S. of Ea. (10) is the conditionally marginal 
expected gain given that the target is not detected until t-1, and the r. h. S. is 
the unit searching cost in cell i. Therefore, in the optimal partial search, the 
amount of the searching effort in each cell should be determined in such a way 
that the conditionally marginal expected gain is equilibrated to its unit cost and 
if the conditionally marginal expected gain is smaller than the unit cost, the 
cell should not be searched. 
2. The optimal stopping time 

Theorem 2 is elucidated as follows. Since pk7'-I in Eq. (12) is the posterior 
probability of the path distribution, the l. h. S. of Eq. (12) is the conditional 
expected value gained by the searcher at the stopping time T given that the target 
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is not detected until T-l and the r.h.s. is the expected searching cost used at T. 
Therefore, this theorem states that if the stopping time T is before the optimal 
stopping time To, the conditional expected value gained by searcher at T is larger 
than the searching cost, and therefore, the searcher should not stop the search. 
On the other hand, if T 2 P, the gain mentioned above is not larger than the 
searching cost, hence the search should not be continued. 
6.2. Generalization of the model 
1. Generalization of the spaces 

In this paper, we assume the discrete target space and the discrete time 
erive the theorems. However, these spaces can be generalized to 

the continuous target space and the continuous time space and similar theorems 
are also obtained. In this case, the problem is formulated in a variational 
problem and we can derive the conditions for optimal search plan by using Gateaux 
differential [81. 
2. Generalization of the detection law 

As mentioned in the assumption (51, we assume the exponential detect ion func- 
) = l-exp(-ai d > )  which corresponds to the random search in each cell. 

However, this function is general ized to a more general function mentioned below 
and similar theorems are obtained without any difficulty [61. 

f(0: f(0) = 0, f(a) = p 5 1, continuous and differentiable with f' (6) > 0 
and Y(d>) < 0. 

3, Discrete searching effort problem 
In our model dealt with in this paper, the total searching cost C O W  is 

assumed to be divisible arbitrarily. This implies that the searching effort 
i S cont inuous such as search t ime, effect ive sweep rate, search area and so on. 
However, in the real world search problems, we can find many cases having the 
discrete effort. In this case, the problem becomes an integer programming problem 
including the combinatorial optimization problem. A1 though our theorems obtained 

er cannot be applied directly to solve this problem, we may be able 
i t  to construct an efficient computational algorithm. Here, if we 

xed problem with continuous variables for the integer programming 
eorems obtained here can be applied to solve the relaxed problem 

and its solution gives the upper bound estimation of the integer problem. There- 
these theorems, we can construct a branch-and-bound algorithm to 
optimal integer solution. 

6.3. Relation to the revious studies 
1. If we s e t  QoW = 1, qO' )  = 0 in our model, we have Q(t,k) = 1 for all t 
and k. Then, the target becomes an immortal target and the theorems obtained in 
this paper are identical with the theorems of the optimal search for a moving 

criterion studied by Iida & Hohzaki L31 and Iida [41 

set iAt) = idO) for all t and k, the target always 
sition, and i t  meams the stationary target. In this 

case, our theorems stated before give the optimal solution of Nakai' S model [51 
(discrete space version). 
3. Here, we consider a case with parameters: R(t) = R Ã 1, c j  = 1, and i d 0  

ny k and t. In this case, the search situation becomes a search for 
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a stationary target as mentioned above, and since R and c j  do not depend on cell 
by the assumption, the optimal distribution of searching effort maximizing the 
expected reward becomes identical with the uniformly optimal solution which 
maximizes always the detection probability during the search subject to the 
total search effort. Moreover, since R > CO, Q )  by the assumption, T o  -> m is 
concluded by Theorem 2, namely, the search is continued until T* = N. Therefore, 
this case is identical with the Stone' S model 171 which gives the optimal search 
plan maximizing the detect ion probability for a stationary mortal target (discrete 
space version). 

7. Concluding Remarks 
In this paper, we wants to throw light upon the optimal SAR operation which 

is characterized by three factors; moving of the target, lifetime of the target, 
and avoidance of the searcher' s risk during the search. We formulate a search 
model for a target with the conditionally deterministic motion defined by paths 
and with a random lifetime under the expected reward criterion of the search. 
We derive necessary conditions for the optimal distribution of searching effort 
and the stopping time of the search, which give clear elucidations for the 
physical meaning. Numerical analysis of several examples give reasonable results 
expected intuitively. However, we are surprised by unexpected sensitivity of 
some system parameters on the optimal search plan. Here, i t  is important that we 
can evaluate the affect of the system parameters on the optimal solution quantita- 
tively and explicitly by applying the theorems obtained here. We show that several 
results of previous studies are derived by specifying the system parameters of 
our model. In order to apply the theorems obtained in this paper to the real 
world SAR operations, we must clarify the definitions for the measures of the 
target value and the searching cost, and determine these values quantitatively 
from the actual data. 
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