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Abstract We consider a dynamic assignment queueing model with multiple packet classes, which has 
a number of queues, each with its own server. This model arises from the output buffer control of an 
ATM-based packet switching system, which is connected to another system via multiple links. Each packet 
is divided into cells and transmitted by cell-by-cell transmission through the links. Such packet arrival 
processes can be modeled as Poisson cluster arrival processes. An arriving packet is assigned to one of 
the queues according to a dynamic packet assignment scheme, which is a variation of the shortest queue 
policy and tries to assign buffer space and/or transmission bandwidth fairly to each class when the system is 
congested. We derive an approximation of the packet loss probability by using a decomposition method and 
an asymptotic of the cell loss probability. Its accuracy is examined in comparison with simulation results. 
The results of this paper can be used for dimensioning the buffer sizes of the ATM-based packet switching 
sys tems. 

1. Introduction 
Recent developments in computer communication require higher speed interconnection ser- 
vices between local area networks (LANs) over wide geographical areas. One way to  pro- 
vide these services is to  build a packet overlay network on top of an asynchronous transfer 
mode (ATM) backbone network by using ATM-based packet switching systems, whose typ- 
ical examples are connectionless servers (CLSs) [3, 4, 13, 171. In such a packet overlay 
network, ATM-based packet switching systems are interconnected via permanent virtual 
circuits (PVCs). Each packet is divided into cells of 53 bytes in data length including the 
headers and is transmitted by cell-by-cell transmission through the PVCs. If ATM adap- 
tation layer (AAL) type 3 or type 4 is used in the network, the first and last cells of each 
packet can be detected by using the values of the segment types (STs) of cells, and if AAL 
type 5 is used, those cells can be detected by using the values of the payload types (PTs) 
of cells. Hence the ATM-based packet switching systems can identify individual packet S 

without reassembling the packets. Furthermore, by reading packet destination addresses 
directly from the first cells of the packets, they can also route and forward the packets by 
high-speed cell-by-cell processing without reassembling the packet S. 

When we attempt to build such a packet overlay network, we must sometimes use multi- 
ple PVCs t o  connect ATM-based packet switching systems because of technological and/or 
economical restrictions [5, 71 (Fig. 1). In this case, a packet assignment scheme for multiple 
PVCs is necessary to construct an output buffer control mechanism used in the ATM-based 
packet switching system. Here, assigning a packet to a queue corresponds to assigning all the 
cells of the packet to the same queue1. Such an output buffer control mechanism together 

'Cell assignment schemes of this type make it possible for ATM-based packet switching systems to 
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PSS: ATM-based Packet Switching System 

Figure 1: A packet overlay network. 

Queues with servers 

Input cells . . . 

Figure 2: A parallel server model. 

with multiple PVCs can be modeled as a parallel server model, where servers correspond 
to  the PVCs and each server has its own cell buffer (Fig. 2). One of the typical packet 
assignment schemes is the shortest queue policy [19], which is a dynamic packet assignment 
scheme and randomly assigns an arriving packet to  one of the shortest queues. Note that  
in this paper the queue length is counted including the cell being served a t  the server. This 
policy intends to  use the servers more efficiently and t o  make the packet loss probability 
smaller. 

However, when the shortest queue policy is used and one user sends many packets a t  a 
time, packet delays for other users may become longer and their many packets may be lost. 
Hence we consider the case of multiple packet classes, each corresponding to  a user, and a 
variation of the shortest queue policy in order to  assign buffer space and/or transmission 
bandwidth fairly to each class when the system is congested. Here each class can be identified 
by, for example, the source addresses (SAS) of the packets, their destination addresses (DAs), 
and the SA-DA pairs, and it can also be identified by the virtual channel identifiers (VCIs), 
the virtual pat h identifiers (VPIs) , and/or the multiplexing identifiers (MIDs) of the cells 
of the packets [ l ,  21. In our packet assignment scheme, a t  the arrival of a packet if there 
exist no idle servers and there exist packets of the same class in the system, the arriving 
packet is assigned t o  the queue to  which the latest packet of the same class was assigned. 
The scheme is composed of the following cell-based packet assignment rules. 

(i) At the arrival of the first cell of a packet if there exist no cells of the same class in the 
system, the cell is randomly assigned t o  one of the shortest queues. 

(ii) At the arrival of the first cell of a packet if there exist cells of the same class in the 

identify each packet, whose cells are transmitted through a common PVC, by using the values of the STs 
or the PTs of cells. Cell assignment schemes that can assign the cells of each packet to different queues are 
the other type, and they require ATM-based packet switching systems to identify the individual packets 
whose cells may be transmitted through different PVCs [7]; This makes it difficult to construct dynamic 
assignment schemes of the latter type. Hence we consider only those of the former type in this paper. 
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system and if there are no idle servers, then the cell is assigned to  the queue to which 
the latest packet of the same class was assigned. 

(iii) At the arrival of the first cell of a packet if there exist cells of the same class in the 
system and if there exist idle servers, then the cell is randomly assigned to one of the 
queues of the idle servers. 

(iv) A cell which is not the first cell of a packet is assigned to the same queue as the first 
cell of the packet. 

Rule (i) corresponds to  the shortest queue policy. Rule (ii) makes packets of each class 
apt to be assigned t o  just one queue when the system becomes congested, and these rules 
lead to fairness among classes. Rule (iii) contributes t o  using servers more efficiently. Rule 
(iv) makes this cell assignment scheme a packet assignment scheme. 

The input process of each class can be modeled as a Poisson cluster arrival process 
[14]. Packets, which are called clusters in the Poisson cluster arrival process, arrive at  
the system via a Poisson process, and each packet is decomposed into a certain number 
of cells, which are called customers in that arrival process. These cells of the packet are 
usually assumed to  arrive at  the system with constant intervals2 and are sent out through a 

. We approximately analyze this parallel server model with finite buffers and 
derive an approximation for the packet loss probability. Here a packet is assumed to  be 
lost when at  least one cell of the packet is lost in the network, since that  packet cannot be 
assembled at  the destination. 

The rest of the paper is constructed as follows. In Section 2 we describe our parallel server 
model in detail. In Section 3 we introduce an approximate model for a single queue of the 
original model. In Section 4 we analyze the approximate model and obtain an  approximation 
for the packet loss probability. In Section 5 the accuracy of the approximation is discussed 
through numerical experiments, and an improvement of the approximation of the packet 
loss probability is proposed. 

2. Model description 
Here we present a rigorous definition of our parallel server model with multiple packet 
classes. Our model is described as follows (see Fig. 2). 

There are S queues. Each queue behaves like a - / D / l / K  model, where service times are 
equal to  a constant A (> O),  which corresponds to  the time taken to  transmit one cell, and 
K is the buffer size including the service position. In each queue cells are served according 
to  the first-in-first-out (FIFO) discipline. 

Let N be the number of packet classes. We only consider a symmetric case, where the 
arrival processes of individual classes are mutually independent and subject to a common 
stochastic law. Packets in each class arrive a t  the system via a homogeneous Poisson process 
with intensity Ao. The sizes (the number of cells) of packets in all classes are i.i.d. random 
variables and we denote by X. a generic random variable representing the packet size. 
Let the time between consecutive cell arrivals in the same packet be equal to  a constant 
8 (> 0). Here 1/6 corresponds to the cell transmission speed of PVCs connecting user 
routers to  ATM-based packet switching systems, while l / A  corresponds to  that of PVCs 
interconnecting the ATM-based packet switching systems. The former speed is usually less 
than or equal t o  the latter one; However we sometimes use PVCs of the same speed t o  build 
a packet overlay networks. Hence we assume that they have the same value (i.e. A = 6). 
We will refer to  an arrival process of this type as a Poisson cluster arrival process [l41 and 

'1n [14], these interarrival times are assumed t o  be i.i.d. random variables. 
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denote by A 4 ^ y D ) ,  where B ( X ,  D) represents the characteristic of each packet as in [ll]; 
X means that the distribution of the packet (cluster) size is general and D means that the 
cell (customer) arrival intervals in the packet are determinate. Packets (and hence cells) 
are assigned to  one of the queues according to  the shortest-queue-type packet assignment 
scheme described in the previous section. A cell is lost if it arrives at  the system when the 
buffer of the assigned queue is full. A packet is considered to be lost if at  least one cell of 
the packet is lost. 

For convenience of description, in the following sections, A and 8 are set equal to the 
unit time length (i.e. A = 8 = 1). 

3. Decomposition of the model 
The original model introduced in the preceding section is very complicated, and it seems 
difficult to get exact results for performance measures. In order to derive an approximation 
for the packet loss probability in the next section, here we shall decompose the original 
model into S independent M^'^/D/~/K models each of which approximately describes 
the stochastic behavior of the corresponding queue. Hereafter we assume that all processes 
considered in this section are in steady states. 

For j = 1,2,  ..., S, let Aj(t) be the number of packets that are assigned to queue j 
during the interval (0, t], Gj(t) be the stochastic intensity of &(t) at  time t ,  and Lj(t) be 
the queue length of queue j ,  or equivalently the number of cells being served or waiting in 
queue j, at  time t .  First, we derive the conditional expectation of Gj  (t) given that Lj  (t) > 0; 
E[i$(t) 1 LAt) > 01 is decomposed as follows: 

The conditions "Lj(t) > 0" and "nLl !(Lt(<) > 0) = 0" mean that, at  time t ,  there exist 
empty queues but queue j is not empty. According to Rules (i) and (iii), the expectation 
in the first term on the right side of equation (3.1) is, therefore, zero. The expectation in 
the second term is given as 

because the summation of the left side of equation (3.2) on j is equal to NAo and S queues 
are symmetric. Substituting (3.2) into (3.1), the conditional expectation of Gj  (t) is given as 

Note that, since Rule (ii) is not used for deriving equation (3.3) explicitly, another expression 
for the expectation of Gj(t) seems to be needed to approximate the packet arrival rate under 
the condition where the system is congested, in other words, where the value of Lj(t) is large. 
This will be discussed again in Subsection 5.2. 
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The conditional probability on the right side of formula (3.3) is represented as 

Since S queues are symmetric, the denominator on the right side of this equation is given 

by 

where bLK) denotes the cell loss probability. The numerator is the probability that all the 
servers are busy, and its approximation is derived as follows. Consider a modification of the 
parallel server model, where each packet is regarded as one customer and his service time 
is equal to  the size of the packet. In this modified model, customers of each class arrive via 
a Poisson process with intensity Ao,  an arriving customer is assigned to  one of the queues 
according t o  the same scheme, and each queue behaves like a - / G / l / K .  Here we consider a 
case where the capacities of the buffers are infinite. Since, in the original model, cell arrival 
intervals in each packet are equal to the constant service time, the probability that all the 
servers are busy in the original model is equal to  that probability in the modified model. 
Hence we approximate that probability of the original model by using the probability that all 
the servers are busy in an M/G/S/oo model, where the arrival rate is equal t o  (l - bLK) NAo 
and the service time distribution is the same as that of Xo. From [g], this probability of 
the M/G/S/oo model can be approximated by using the corresponding probability of an 
M/M/S/oo model, where the arrival rate is the same as that of the M/G/S/oo model and 
the mean service time is equal to EIXo]. As a result, we obtain the following approximation: 

where 

From formulas (3.4), (3.5), and (3.6), the following approximation is obtained. 

S -5-1 

l (Lt ( t )  > 0) = 1 
Sao p0 

(S - l ) !  (S - no) ' 

A decomposed M ~ ( ~ ^ / D / ~ /  K model is given as follows: let A be the packet arrival 
intensity in the model. From formulas (3.3) and (3.9), A is given by 

~ A ~ i i i - ~ &  
A = 

(S - l ) !  (S - Go) ' 

The distribution of packet sizes and the value of service times of cells in the decomposed 
model are the same as those in the original model. 
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E [% (t) 1 L j  (t) > 01 is the conditional mean arrival intensity of packets given that Lj  (t) > 
0; however, we use the same value for the case when Lj( t)  = 0. The reason is as follows. 
From Remark 1 below, both the cell loss probability and the packet loss probability are 
independent of the packet arrival intensity during idle periods because the packet arrival 
processes are assumed to  be Poissonian and the beginning point of each busy period is a 
regeneration point for the cell arrival processes. 

[Remark l] Consider a G/GI /c /K model. Let ~ ( t )  be the number of customers that 
arrive a t  the system during an interval (0, t] and be the service time of the nth arriving 
customer. Suppose that the beginning point of each busy period is a regeneration point for 
~ ( t ) .  Let B{t) be the number of customers that overflow from the system during an interval 
(0, t]. Since B{t) can be generated from { ~ ( s ) ,  S 5 t} and {L n < ~ ( t ) } ,  the beginning 
point of each busy period is also a regeneration point for ~ ( t ) .  Therefore, from the property 
of renewal-reward processes [a ] ,  the overflow probability b is given by 

where is the number of customers that arrive during a busy cycle (a busy period and the 
subsequent idle period), and B. is the number of customers that overflow during the busy 
cycle. Because all the arrivals and overflows in each busy cycle occur in the busy period, 
both A0 and go are independent of the probability law of Af t )  during the idle period of 
the busy cycle. Therefore, b is also independent of the probability law of ~ ( t )  during idle 
periods. D 

4 An approximate analysis of a discrete-time version of the M * ( ~ ? ~ ) / D / ~ / K  
model 

In this section, we consider a discrete time version of the M ~ ( ~ ~ ~ ) / D / ~ / K  model; cells arrive 
and depart only a t  discrete time points {O, 1, 2, ... }. We further assume that departures 
occur before arrivals a t  the same time point. For the case where the distribution of X. is 
geometric, the cell loss probability was derived in [ l l ] .  Here we assume that X. is bounded 
above and do not assume that its distribution is geometric. An approximation of the packet 
loss probability is derived in the following three steps: (1) An upper bound of the cell 
loss probability is obtained. (2) Using this upper bound, an  approximation of the cell loss 
probability is derived. (3) The packet loss probability is approximated using the cell loss 
probability. 

4.1. Upper bound of the cell loss probability 
Let ap(n) be the number of packets arriving a t  time n. Then {ap(n)} are i.i.d. random 
variables subject to a Poisson distribution with mean A. Let X j  be the size (the number of 
cells) of the j t h  arriving packet and assume that each Xj has the same upper bound gmaz. 
Packets are numbered sequentially, with the first packet that  arrives after time zero having 
the number zero. Let p be the traffic intensity defined as p A EIXo]. Let ac(n)  be the 
number of cells that arrive a t  time n. When the j t h  packet arrives a t  time n,  its cells arrive 
sequentially a t  n,  ( n  + l ) ,  .. ., ( n  + X, - 1). Let Ip(n)  be the number of active packets that 
have cells arriving after time n and Rc{$ n)  be the number of residual cells of the i th active 
packet for i = 1, 2, ..., Ip(n);  for example, if a packet of size Xk arrives at time n when the 
system is empty, then Rc(1,  n)  = Xk - 1, Rc( l ,  n + 1) = Xk - 2, and so on. Let Z(n)  be a 
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vector indicating the number of active packets and the number of residual cells: 

Since { Z ( n ) }  forms a Markov chain and ac{n) satisfies equation 

{ac (n ) }  can be considered as a discrete-time Markov Aadditive process (MAP) with the 
underlying Markov chain { Z ( n )  } . 

We first analyze an ~ ~ ( ~ ~ ~ ) / D / l / o c l  model, which has the same arrival process and 
service times as the M * ( ~ ~ ~ ) / D / ~ / K  model, but the buffer capacity is infinite. For each 
n  > 0, consider a queueing process that began a t  time -n, and let Lo(n)  be the number of 
cells in the system at time zero. We introduce the following notations: 

Mo{n) E: Lo(n)  - ac (0 )  for n  > 0, 

u ( n )  ac(-n)  - 1  for n > 0,  
n 

U ( n )  = x u ( j )  f o r n 2 1 ,  U(O)=O. 
]=l 

From the definition of the process { u ( n ) } ,  this process becomes a discrete-time MAP with 
the underlying Markov chain { Z ( n ) } .  Renumbering the states of { Z ( n ) }  such that the state 
space becomes P, the kernel of the MAP and its transform are defined by 

where 

Loin} and Mo(n)  are represented by U (-) in the following manner: 

+ + +  L0 ( n )  = [ ~ ( l )  + [u(2) + + [+)l ] ] + ac(O) 
= max U ( j )  + ac (0)) (4.11) 

057 5n 

Mo(n)  = o<j<n max U ( j ) .  (4.12) 

Under some suitable conditions foi 
and MQ, are obtained as follows: 

{ac ( n ) ) ,  the stationary versions of L. ( n )  and Mo(n) ,  L. 

lim MO(%) = sup U ( n )  , 
n+m nâ‚¬ 

lim Loin) = MO + ac ( 0 )  . 
n+m 
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We further introduce the following notations: 

A(n; S) = log ~ [ e ' ~ ( ~ ) ]  for n > 0 and 0 C Â¥R. (4.15) 

A(0) = lirn n - l ~ ( n ;  0) for n > 0 and 0 R, 
n-im 

(4.16) 

0' sup{@ 1 A($) < O}. (4.17) 

Then, using the results of [6], an upper bound of the tail distribution of MO is given by the 
following theorem. 

[Theorem l] [6] If E [ u ( l ) ]  = p - 1 < 0, then 

Pr(Mo > k) 5 4 0 )  e-'* for k > 0 and S E [O, 61'1, (4.18) 

where p(0) is the essential supremum 

p(0) = sup (X : Pr ( l(+) > 0) > > () 
f2i.i (6) 1 .  

and ( ~ 4 0 ) )  is the right eigenvector of the matrix (pn- (0)) corresponding to the simple max- 
imal eigenvalue eA('). The vector (vi(@)) is positive and bounded above. 

Since [Lo - l]+ = [Mo + u(O)]+ A MO, an upper bound of the tail distribution of L. is 
given as 

Pr(Lo > k) = Pr([Lo - l]+ > k - 1) 
= Pr(Mo > k - 1) 

< - p(@ e-'('-l) fork  > 1 and 0 E [O, 0*}. (4.20) 

Let br' be the cell loss probability in the M ^ ' ( ~ ~ ~ ) / D / ~ / K  model. Then we have the 
following theorem. 

[Theorem 21 

(Proof) See Appendix. 

Theorem 2 and (4.20) directly lead to an upper bound of b K )  as 

b?) 5 y(<l)e-*"" for 0 C [O, S*]. (4.22) 

4.2. Approximation of the cell loss probability 
On the right side of inequality (4.22), O* is easily calculated according to Proposition 1 
below; however, it is difficult to calculate p(@) because the eigenvector (vi(@)) should be 
calculated. Hence we try to approximate the cell loss probability. From [6], the asymptotic 
decay rate of the distribution of MO is -Q*, i.e. limK- K 1  log Pr(Mo 2 K) = -Q*. From 
this and Theorem 2, it is proved that the asymptotic decay rate of bLK) with respect to K 
is bounded by -g*, as follows: 

lim K-' log b,$?) 5 lim K-' log(p-l Pr(Lo 2 K + 1)) 
K- K->m 

= lim K-'{- log p + log Pr(Mo K)} = -0'. 
K-m 
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From this result we propose the following approximation: 

bg' is the cell loss probability of the MB^X 'D^ /D/~ /~  model, and it can be obtained by using 
the fluid flow approximation as follows. Consider an M/G/oo model, where the arrival rate 
is equal t o  A and the service time distribution is the same as that of Xo. Let Loo(t) be the 
number of cells in the system at time t .  We assume that,  in this M / G / m  model, work is 
lost a t  a rate (Loo(t) - 1) when Loo(t) > 1, and let the volume of lost work correspond to 
the number of lost cells in the MB<Â¥X^/~/l/ model. As a result, b g )  is approximately 

lim 
f ' [La(s)  - 11+ ds 

t+oo S; L^{s) ds 

given by the following formula: 

b p  Ã 

The value of 0* can be calculated according to  the following proposition. 

[Proposition l] Assuming p = A EIXo] < 1, the value of 6* is obtained as the unique 
positive root of the equation 

where [ ( z )  = E[ zxO 1. The root can be easily calculated using usual numerical methods, 
such as Newton's method or the binary search method. 
(Proof) Let us consider a discrete-time version of an M x / ~ / l / m  model, where all the 
cells of each packet arrive at  the same time, not with regular intervals. The packet arrival 
process, packet sizes, and service times are the same as the discrete-time version of the 
M^M/D/I/K model. For this ~ - " / D / l / o o  model, let a:(n) be the number of cells that 
arrive a t  time n ,  and let uO(n), UO(n),  AO(n; (?), and AO((?) be defined in the same manner 
as u(n),  U(n),  A(n; (?), and A((?) in the previous subsection, respectively. This time {a:(̂ -)} 
are i.i.d. random variables subject to a compound Poisson distribution. 

Since the packet sizes are bounded above by gmax, we have 

Hence the following inequality holds: 

log ~ [ e ^ ' ( ~ )  ] + log E[ e-6u0(gmax) ] < - log E[ eeU-) ] 

5 log E [ e6u0(n) 1 + log E[ e6u0(gmax) ] . (4.27) 

Dividing each term by n and letting n tend to infinity, the relation A((?) = AO((?) is obtained. 
Therefore A((?) is given by 
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4.3. Approximation of the packet loss probability 
Consider the M ~ ( ~ ~ / D / ~ / K  model and assume that it is ergodic. Let Ap(n) and Ac(n), 
respectively, be the number of packets that  arriving during interval [ O ,  n) and that  of cells 
arriving during the same interval; and let B 3 n )  and B n n ) ,  respectively, be the number 
of packets lost during interval (0,  n) and that of cells lost during the same interval. A packet 
is assumed to  be lost when a t  least one cell of the packet is lost. Let b$?) and &LK) be the 
packet loss probability and the cell loss probability, respectively. In order to  represent bpK) 

( K )  in terms of bc , we introduce the mean number of lost cells in a lost packet, K. This is 
( K )  ( K )  given by K limn+OO By (n ) /Bp  (n) .  Using K ,  b { f }  is given by 

Bp^ (n) 

where the upper and lower bounds of K are given by 

The value of K depends on how the cells of a packet are consecutively lost. In [10],  it was 
shown that the lengths of the periods of loss are independent of the buffer size. From this 
and numerical experiments in the next section, we conjecture that the value of K is almost 
invariant with respect t o  the buffer size K if the value of K is sufficiently large. However, 
it is difficult to  calculate K except for the case when K = 1. Therefore, we use the value of 
K in that case ( K  = 1) as an approximation of K. Letting this value of K be K,  the following 
approximation of bLK is obtained from (4.23) and (4.29).  

K is approximately obtained as  follows. Consider the M ~ ( ~ " D ^ / D / \ / ~  model, and let a 
be the probability that a tagged packet is not lost. Using a, K is given by 

where bg)  is given by formula (4.24). We approximate the value of a by using the probability 
that  a tagged packet arrives when the system is empty and no other packets arrive at  the 
system until all the cells of the tagged packet arrive. Since a tagged packet arriving when 
the system is not empty may not be lost, this approximation underestimates the value of a. 
Therefore, K is also underestimated by its approximation. Let Yo be the random variable 
representing a time interval between consecutive packet arrivals. The distribution of Yo is 
exponential with mean A l .  The approximation of a is given by 

a a ( l  - p(l - b g ) ) )  Pr(X0 - 1 5 Yo) 
00 

- - 1 - p + p b y )  e-*-l) p r ( x o  = j )  

where we assume that P r ( X o  = 0 )  = 0 ,  and 6 2  is given by formula (4.24). 
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5.  Numerical experiments and an improvement of the approximation 
This section explains the accuracy of the approximations for the cell loss probability, the 
packet loss probability, and the mean number of lost cells in a lost packet K by comparing 
them with simulation results; it also presents an improvement of the approximation of 
the cell loss probability for a parallel server model with the shortest-queue-type packet 
assignment scheme. Hereafter we use two types of packet size distributions in common: one 
is a unit distribution, whose mean is equal to  35, i.e. EIXo] = 35; the other is a uniform 
distribution, whose minimum and maximum values are equal to  1 and 35, and whose mean 
is equal t o  18, i.e. EIXo] = 18. The reason why we use the packet size of 35 as  the maximum 
packet size is that the maximum packet length in the Ethernet is 1518 bytes and a packet 
of this size is divided into 35 cells when AAL type 3 or 4 is used. 

5.1. An M^'^/D/~/K model 
Figures 3 and 4 show comparisons between approximation results and simulation results for 
the cell and packet loss probabilities and K in an M ~ ^ X ~ ~ ) / D / ~ / K  model. In each case, 
packet arrival intensity A is determined to  make the traffic intensity p (= A EIXo]) be equal 
to a given value. 

Cell loss probability 
From Figs. 3(a) and 4(a), we see that  the approximation of the cell loss probability is 

sufficiently accurate for all cases. 

The mean number of lost cells in a lost packet: K 

From Figs. 3(b) and 4(b), we see that,  for all cases, K is underestimated by its approx- 
imation when the value of the buffer size K is near one, and it is overestimated by its 
approximation when the value of K is large; the reason for the former was explained in 
Subsection 4.3. From these experiments, we propose the following conjecture about K: the 
value of K is rapidly decreasing as K is increasing, and it converges to  some value. If we 
obtain the value that  K converges to, it is expected to  improve the approximation. 

Packet loss probability 
From Figs. 3(a) and 4(a), we see that the approximation of the cell loss probability is 

also sufficiently accurate for all cases. Since the approximations of the cell loss probability 
and K make the approximation of the packet loss probability, the approximation errors of 
the packet loss probability result from those of the cell loss probability and K. From these 
experiments, the errors of K do not affect the accuracy of the approximation of the packet 
loss probability so much. 

5.2. A parallel server model and an improvement of the approximation 
Figure 5 shows comparisons between approximation results and simulation results for the 
cell and packet loss probabilities in a parallel server model with the shortest-queue-type 
packet assignment scheme. Since 0.0 in formula (3.10) contains the cell loss probability &LK, 
we here use an iteration to obtain the approximation results, as follows; Initially, set bc(K) 
in formula (3.7) to  be zero and calculate an approximate value of the cell loss probability 
of the parallel server model by using formula (3.10) and the results of section 4; Next, 
set be ( K )  in formula (3.7) to be this approximate value and calculate a new approximate 
value of the cell loss probability; Continue this procedure until the difference between a 
new approximate value of the cell loss probability and the previous one becomes sufficiently 
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Figure 3: An M ~ ( ~ T ~ ) / D / ~ / K  model (Xo = 35: constant). 

small. From this figure we see that our approximations are accurate only when the buffer 
size K is near one. The reason for this is considered as follows: if the number of cells in 
queue j is greater than one, a t  least two packets have recently been assigned t o  the queue 
and a t  the time point when the latest packet was assigned to  the queue all the servers in the 
system were busy. This means that the next packet of the same class as  the latest packet 
is probably assigned to  the same queue according t o  Rule (ii). In such a situation, it is 
considered that  the conditional expectation of Gj (t), E [Gj ( t )  1 Lj  (t)  > 01, can be represented 
as  the following formula more accurately than formula (3.3). 

N - S  S 

E [Gj(t) 1 Lj(t)  > 01 A0 + p 

S 
l(Li( t)  > 0) = 1 

( N  - s)G-~@~ 
= A n +  

(S - l ) !  (S - Go) 
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Figure 4: An M ~ ( ~ . ^ / D / ~ / K  model ( X o  is uniformly distributed between 1 and 35) .  

On the right side of the first line of the equation, the first term represents that at  least 
one class is assigned to queue j ;  This means that if an  arriving packet of another class is 
assigned t o  queue j, a t  least one of other classes is assigned to  each queue. Hence the second 
term on the right side of the first line contains the factor ( N  - S ) / S  instead of N / S .  Using 
this formula, we propose a hybrid approximation, in which the packet arrival intensity is 
given by formula (3.10) when the value of K is small, and it is given by formula (5.1) when 
the value of K is large. Let Al be the packet arrival intensity given by formula (3.10) and 
A2 be that  given by formula (5.1).  When A is given by AI,  let 0* and bg' be denoted b y  0: 
and b'c\; when A is given by A2, let 0* be denoted by 0;. A new approximation of the cell 
loss probability is given by br) % ( 1  - /b ( l )  e -@i (K- l )  + bG e-e;(K-l)  

c.1 C,2 C.1 1 (5.2) 
( 1 )  where bC2 is the solution of equation 
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and KO log(3/^; (3 is a parameter to  determine the value of K a t  which the term of 
e-';(^-') becomes superior t o  the term of e-e"(K1). 

approximation ~ --*-- simulation 

Buffer size 

(a) N=20, S=10, p = 0.5 

Figure 5: A parallel server model with Scheme B': the first versions of the approximations 
for the cell and packet loss probabilities (Xo = 35: constant). 

Figures 6 and 7 show comparisons between approximation results and simulation results 
for the cell and packet loss probabilities in a parallel server model with the shortest-queue- 
type packet assignment scheme, where the approximation results are calculated by using 
formula (5.2). The value of (3 is equal t o  10 for all cases. From these figures, we see that 
the approximations of the cell and packet loss probabilities are rather accurate except for 
the cases where the packet size distribution is the uniform distribution and the value of p 
is relatively large. 

6. Conclusions 
This paper derived an approximation of the packet loss probability for a parallel server model 
with a dynamic packet assignment scheme, which is a variation of the shortest queue policy. 
Numerical examples showed the accuracy of the approximations. This approximation is 
useful for dimensioning the buffer sizes of ATM-based packet switching systems. 
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Appendix A. Proof of Theorem 2 
In this appendix, an upper bound of the cell loss probability is obtained using the queueing 
model with an infinite buffer. Approximations for cell loss probability have been obtained 
in other works [12], [15], and [16]. 

We consider a general discrete-time queueing model denoted by Dx/D/c /K:  arrivals 
and departures only occur a t  discrete time points {n : n E Z + } ,  and it is assumed that 
the departures occur before the arrivals at  the same time point. c denotes the number of 
servers and K denotes the buffer size including the service positions. Let a., be the number 
of cells that arrive at time n. The arrival process, a E {an, n E Z+}, is general; that is, an 
may depend on {aj, j < n - l}. Let L? be the number of cells in the system a t  time n.  
The queueing process {L^. n E Z+} is given by the following recursive formulas: 

I.% = min{K, [LP - c]+ + an} for n E 2' and L^ = ao. 
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Figure 6: A parallel server model: cell and packet loss probabilities (Xo = 35: constant). 

Before proving Theorem 2, the following proposition is presented: 

[Proposition Al l  ([l81 , Theorem 9) Consider two queueing models, DX / D / C /  Ki 
and D ~ / D / C / K ^ ,  which have the same arrival process a. For these models, the following 
formula is obtained: 

Let BP be the number of cells lost a t  time n. BP where n 6 2+ is given by 

The cell loss probability b^ is given by S lim BiK)/ Â£; at, and the traffic 

intensity p is given by p G $ lirnndm ae/n .  Let (p'00)) be the limiting distribution of 
the number of cells in the system for the D ~ / D / C / O O  model with the same arrival process 
a. This is given by S limn+oo E;:; l(Â£ = J ) / i .  
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[Theorem 21 (Generalized version) Assuming that the DX/D/c/oo model is sta- 
ble (i.e. limnAco -^Â¥'Lw < m w.p.1) and xzoq = m w.p.1, an upper bound of b̂ is 
obtained as follows: 

(Proof) Let Q, be defined by Q, EE [L;") - K]+ where n E 2+ and Gn by 

a, EE max{O, a, - rnax{O, K - [L^[ - c]'}} 

= max{O, min{an, L ;  - K}}. (A.6) 

To prove that {Q,} is the queueing process for a D X / ~ / c / o o  model with arrival process 
{&I, Qa = So and Qn+l  = [Q, - c]+ + an+l, n E 9 are verified as follows: 

do = max{O, min{ao, a. - K}} 
= max{O, a0 - K} = Q0, 

and 

[Q, - c]+ + &.+l 
= max{O, max{O, LP - K} - C} + &+l 

= max{an+l, + Â£Lco - K - c} 

= max{ [min{a,+l, L̂ \ - K}]+, [min{a,+l, L̂ { -K}]+ +L^ - K - c} 

= max{O, min{a,+l, L!;\ - K}, L  ̂ - K - c, 

m i n { ~ , + ~ ,  ~ f f i  - K} + L;") - K - c}, 

where 

and 
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For the ~ ~ / D / c / o o  model with arrival process {Gn}, let dn be the number of cells that 
departed a t  time n. Since dn+i = min{c, Q,}, Qn = 0 =!> dn+l = 0, and dn+l 5 c, the 
following inequality is obtained: 

Using 1(Qn > 0) = l([Â£Lcc - K]+ > 0) = 1(Â£Lm > K), we get 

From this formula and Proposition A4.1, we get 

n-1 n-1 

c -  ~ Â £ 1 ~  > K )  + [L^{ - K - c]' 2 x m a x { O ,  min{ae, [LE - c ]++ae  -K} 

n-1 

> rnax{O, min{ae, [LE! - c]' + at - K} 

Using this formula and the assumptions, the proof is completed as follows: 

S,Â¡lK+ S?: l ( ~ ( ~ )  = J')/n ( 1  - K -  C]+ < lim + lim [Ln - 1 
n+cc - ae/n n-cc G^ at  

(A. 10) 
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