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Abstract In this paper a single facility location problem for an ambulance service station in a polygonal 
area X is considered. Our objective is to locate an ambulance service station so as to minimize the maximum 
distance of the route which passes from the facility to the hospital by way of the scene of accident. In 
this paper, we consider A-distance which is a generalization of rectilinear distance and was introduced by 
Widmayer et al. 

Assuming m hospitals at  the points Hh H-^, - - ,  Hm and denoting the nearest hospital to a point Q of 
X with S ( Q ) ,  the following problem PM is considered. 

PM : Minimize max R(P*,  Q)  = { ^ ( P * ,  Q )  + s ( Q ) ) } ,  P* Q e X  

where P* = (X*, y*) is the location of an ambulance service station to be determined. Then we show PM 
can be reduced to the messenger boy problem with A-distance. Utilizing this result, we propose an efficient 
solution procedure by extending Elzinga & Hearn Algorithm to A-distance case. 

1 Introduction 
In this paper a single facility location problem for an ambulance service station in a 

polygonal area X is considered. In rnodeling facility location problem, there are two main 
criteria; 1) minisum criterion 2) minimax criterion. In minisum criterion model the optimal 
location is determined so as to minimize weighted total distance to the demand pointsf51, 
[10]. In minimax criterion model the optimal location is determined so as to minimize the 
maximum distance between a new facility to be located and demand points. Emergency 
facilities location problem is often modeled as the minimax model. The mini-max models 
a,re studied by [4], [7], [12]. If an accident happens at  a certain place, then ambulance 
serve.rs rush to the scene of accident and take the injured persons to the hospital as soon as 
possible, then the objective is stated as the minimization of losses resulting from accidents. 
So we formulate our problem as the minimax location model. 

In considering the location problem, the determination of measurement of the distance 
is also important. Two major distance measurements are used in many location studies. 
One. is rectilinear distance in which the allowable orientations of travels are two orthogonal 
ones and this measurement is the most popular one in the urban area model. The other 
is Euclidean distance, with no restrictions of orientations to travel. The rninimax location 
problems wit h Euclidean distance and rectilinear distance are already investigated by [3], 
[15], [2]. But neither measurement necessarily give the good approximation of distance in 
the urban travel distance cases. So in this paper, we consider A-distance case which is 
the class of block norm [14], [13], [ l l ] .  A-distance can be considered as a generalization of 
rectilinear distance and was introduced by Widmayer et al.[16]. They used A-distance in 
connection of VLSI design problem. They only investigated some properties of A-dist ance 
but did not apply it to any facility location problem. 

In Section 2 definition of A-distance and some properties with respect to A-distance are 
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given. In Section 3 we formulate our ambulance service station location problem and show 
that the problem is reduced to the messenger boy problem with A-distance. In Section 4 
an efficient solution algorithm by extending Elzinga & Hearn Algorithm to A-distance case 
is presented. Finally we summarize this paper in Section 6. 

2 A-distance 
In facility location problem we measure the transportation cost by the distance between 

origin and destination. If we can travel to any orientations, good approximation of distance 
between two points may be Euclidean distance. But this ideal is seldom a,chieved in practice 
because of the existing of the some barriers to travel. When we measure the distance by 
rectilinear distance, the movement is allowed only to horizontal and vertical orientations. 
The Rectilinear distance is considered to be good approximation when distance is measured 
in city-street grid. The rectilinear distance d l (fi , P2 ) and Euclidean distance d (Pl , P2 ) 
between two points Pl and Pg are defined as follows. 

where Pi = (a l , a ) , P2 = ( b  , b ) , a l and 6 are X-coordinates of point Pi and P2, 
a,nd a and by ,  are y-coordinates of points Pl and P2 respectively. 

In this paper we consider that travels are allowed only to some predetermined orientations 
A, where A denote the set of allowable orientations. We measure distance between points 
by A-distance which is class of block norm and introduced by Widmayer et al.[16]. 

Let @(Pl  , P2) denote an orientation of a line, a halfline and a line segment which 
connect Pi and P2, if Q{Pi , P2) belongs to the set A then we call @(Pi , P2) is A- 
oriented. 

Then A-distance dA(Ps  , Pg ) between two points Pi and P2 can be defined as follows. 

d2(P1 , P2) : if Pi and P2 lie on an A-oriented line , 
dA(P1, P2) = 

rnin {dA(Pl, P3) + dA(P3, P2)} : otherwise . (2.3) 
p3?R2 

Figure 1. A-distance. 

As is shown in Figure 1, dA(Pl , P^} can be realized by a polygonal line segment consisting 
of at  most two line segments by using at  most one extra point, i.e., there exists a point Ps 
such that 
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Let [AI = r and { al , a2 , , a r } denote the set of allowable orientations such that 
0 < a1 < a2 < --â < a r  < TT where a i  , i = 1, 2,. . . , r ,  represents the angle with the 
x-axis of the corresponding straight lines. 

If a i < @(P2, P2) < ai+l, where a1 and bl are X-coordinates of point Pi and P2, and 
a2 and b2 are y-coordinates of points Pi and P2 respectively, then 

Note that either a i or a i + 1 = 4 2 ,  then we interpret 

Ml = lim 
,/m$ 

= 1 , M2 = lim 
'1- 

= 0 
m l + ~  fn\ -7712 ml-00 m 1 -m2 

and 

So, in this case, 

Thus, when a i  = 0 ,  ai+1 = 7 ~ 1 2 ,  ^ ( P I ,  Pi) = \a2 -b2l+lal -611, since m2 = 0, and 
it is very same as rectilinear distance. 

For a point P ,  the locus of points P' with equal A-distance d from P is called the A-circle 
with radius d at center P, which has the boundary of the 2r-gon, with corner points lying 
on the intersections of the circle with radius d at center P with the A-oriented lines through 
P, and edged between corner points adjacent on the circle(see Figure 2). 

Figure 2. An A-circle with A-distance edges. 
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For two points Pi and P2, the bisector BA(P17 P2) of Pi and P2 is the locus of points 
that have equal A-distance to P1 and P2; 

The center point of the line segment PIP2 belongs to the bisector BA(Pl , P2). This point 
is called the anchor point of BA(Pl , P2). The lines of all orientations of A through PI and 
through PZ partition the plane SR2 into (bounded and unbounded) regions through which 
none of these lines passes, called fields. The bisector of two points PI and Pg7 when restricted 
to a field of Pi and P2, is empty, a line segment, or a half line. The heavy polygonal line 
in figure 3 shows lower half of the bisector for points Pi and P2 and the star on that line is 
the anchor point. 

Figure 3. The march on the A-circle boundary 
when following the bisector. 

Finally, &(Pl ,  P2) is constructed by an unbounded, continuous polygonal line, con- 
sisting of no more than 2r-l pieces. It partitions the plane SR2 into two unbounded regions, 
B R A ( P ~  I P2) and BRA (P2 I P1 ); where Pi 6 BRA (P1 1 P2) and P2 E B R A ( P ~  1 PI).  All 
points in BRA(Pl \ Ps) are at least as close to Pi as to P2 and all points in BRA(P2 \ P l )  
are a t  least as close to  P2 as to Pi. 

For a set of v points, P = {P1 , P2 , . . . , P"},  Voronoi polygon VA(Pi  ) on point Pi with 
respect to P with A-distance is defined as follows. 

The set of all Voronoi polygons for the points in P is a partition of the plane SR2 and is 
ca,lled the Voronoi diagram V D A ( P )  for P .  The boundary of VA (P i  ) consists of partitions 
of bisector between Pi and PI and is called Voronoi edge of VA(Pi  ). The endpoints of 
Voronoi edge are called Voronoi points. V D A  ( P )  can be constructed in at  most 0 ( v  log U )  
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computational time. Figure 4 shows Voronoi diagram of case A = { O ,  v/2}, i.e. rectilinear 
distance 

Figure 4. Voronoi Diagram A= {O , w/2}. 
(Rectilinear case) 

3 Problem Formulation 
Now we consider an ambulance service station location problem given as below. 
If an accident (demand) happens, the ambulance servers rush to the scene of accident 

(demand point) and take the injured persons to the appropriate hospital as soon as possible. 
We consider a polygonal area X in which an ambulance service station should be located, 

demand occur, and m hospital, Hi , Hi , . . . , Hm, are existing. Since the place of demand 
point can not be predicted, we assume that demand points are distributed uniformly over 
the area X. 

Then our objective is to locate an ambulance service station so as to minimize the 
maximum A-distance of the route which passes from the service station to the hospital by 
way of the scene of accident. 

Let S(Q) denote the nearest hospital to the point Q, we formulate an ambulance service 
station location problem as following problem PM. 

PM : Minimize max R(P* , Q) = {dA(P* , Q) + ~ A ( Q ,  S(Q))} , 
P* QGX (3.1) 

where P* = (X*, y*) is the location of an ambulance service station to be determined. 
First, we construct Voronoi diagram V D A ( H )  with respect to the set of points {H} = 

{Hl , Ha , . . . , Hm} and A-distance in order to solve the problem. It can be done in at most 
O(m1ogm) computational time [l6]. In the sequel, we show the candidate points which 
maximize R(P* , Q) are Voronoi points of Voronoi diagram V D A ( H )  on the boundary of 
X or vertices of boundary of X. 

We call orientat ions a i and &+l are adjacent and if j = r, we promise j + 1 = 1. Then 
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the following theorem holds. 

T. Matsutomi & H. Ishii 

Figure 5. Relation of locations between line 
segment and some points. 

Theo rem 1. For the line segment DE with endpoints D ,  E  and points B , C not on DB, 
suppose B D  and B E  are A-oriented'adjacent orientations a, , a + (That is, consider the 
situa,tion given in figure 5). Then the maximum A-distance among paths between B and C 
via point on the line segment D E  is attained when the path visits D or E. 
(Proof) The lines of all orientations of A through C partition the line segment DE into 
subintervals [Fk, Fk+l], k = 0 ,  1 , .  . . , q - 1, where Fa = D ,  F, = E and Fk, k # 0 ,  q are 
cross pointss between LIE and all A-oriented lines through C. Consider the certain subinter- 
a l  [F' . Fk+i\. By a suitable transformation, we assume DE is X axis, F k  = (0, 0) , F~+I == 
(e . 0) , B = (bl , b2) and C = ( c  l , G)  without any loss of generality. Then for point 
T =  ( X ,  0) ( 0 5  X <  e) 

where 

m1 = max (tan aj , tan aj+1) , m  ̂ = rnin (tan aj , tan aj+1) , 

777.3 = max (tan a, , tan &l+]) , m4 = min (tan , tan al+l) , 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Minimax Location with A -distance 187 

and o , o + are the orientations corresponding to the subinterval [Fk , Fk+i}. R;(x) is a 
convex function and so maximum value of R;(x) is a.ttained at  X = 0 or X = e, i.e. T  = Fk 
or Fk+l. Thus the candidate points of maximum A-distance path is F. , . . . , Fq. Since each 
F k ,  k = l l  2 , . "1  (?-l ,  d ~ ( F k ,  C)=d2(Fk, c ) ,  ~ A ( F o ,  C)>d2(Fo, ~ A ( F ~ ,  C )  2 
d2(Fq .  C )  and a j , aJ+i are adjacent orientations, then d A ( B ,  T )  +di (T ,  C ) ,  for T 6 DE 
is consider as a path length between B  and C  via T  DE. 
Now let D  = (0 ,  0) , E = (e', 0 )  , B  = ( 6 1 ,  b2) and C  = (cl , c2) without any loss of 
generality. Then for T  = ( X ,  0 )  , 0  < X < e' 

Each term of right hand side in the above expression is convex function of X. So maximum 
of d A ( B ,  T )  + M T ,  C )  is attained at  X = 0 or e', i.e. D or E. Further the path length 
through D or E is not less than d A  ( B  , D) + d2 ( D ,  C )  or d A  ( B  , E )  + d2 ( E ,  C ) ,  because 
CD (EC)  is not necessarily A-oriented. Therefore maximum is attained a t  D  or E. 

Q.E.D. 

Further we relax the constraints that BD and BE have oc and orientations re- 
spectively from Theorem 1. 

Theorem 2. Consider points B ,  C and line segment DE with endpoints D  and E. Then 
d A ( B ,  T )  + dA(T ,  C ) ,  T  E DE, is maximized when T  = D  or E. 

(Proof) We draw all A-oriented half lines from B and C,  and let all intersections of these 
lines and DE be Tl , T2, - . ,  Tt-1 by ordering from D. Further let To = D  and Tt  = E. 

Figure 6. Intersections and line segment DE. 
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Then the situation may be as Figure 6. By Theorem 1, when consider the subinterval 
T E [Ti - , Ti + l ] ,  dA(B, T) +dA(T, C) is maximized at or Ti+1. So Ti is dropped 
from candidates of maximizer. In turn, when considering T E [Ti -2 , Ti ] , T -1 is dropped 
b y  Theorem 1. Continuing this way, only remaining candidates are D ,  E and points as 
Ti +7 which are intersections of DE and certain A-lines from both B and C. Let all points 
on DE with same property as be T[ , . . . , 77. Then 

since both BT; and are A-oriented. Since Euc1idea.n distance is a convex function, 
then d2 (B , 7') + d2(T, C )  , T E DE is maximized a t  T = D or E. Thus 

and 

d~ ( B  , E )  + d~ (E, C )  > d2 (B, E )  + d2 ( E ,  C )  (3.10) 

implies dA(B, T) + dA(T , C) , T E DE is maximized at  D or E. 
Q.E.D. 

0 Hospital 
V3 @ Facility 

Figure 7. Voronoi diagram with respect to H 

Figure 7 illustrates a small example of Voronoi diagram with respect to H = { H l  , . . . , Hm}. 
Consider any interior point E of X on a Voronoi edge and draw the half line originating 
from t,he facility P and through E. Let the intersection of this half line and the other 
Voronoi edge of same Voronoi polygon as E be F. 

Further let the intersection of this half line and boundary of X be G. I t  is sufficient to 
consider the situation of Figure 7, in order to show 

It  holds that 
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by the triangular property of A-dist ance. 
Since F is on Voronoi edge of Voronoi polygons with respect to both H2 and H4, then 

Fat her 

by the triangular inequality of A-distance. Thus 

From above consideration and Theorem 2, we have following Theorem 3. 

Theorem 3. Candidates of maximizer of R(P* , Q) are 
(a) Vertices of boundary of X. 
(b) The intersections of Voronoi edges and boundary of X. 

(Proof) It is directly shown from above consideration and Theorem 2. 
Q.E.D. 

From Theorem 3 we can reduce the number of demand points which shoud be considered 
in the solution procedure for PM to finite size. 

Let vertices of boundary of X be , , . . . , Vw Further let the intersections of Voronoi 
edges and boundary of X be E l ,  E2, .  . . , &. By a suitable numbering of V\ , Vy, , . . . , Vn 
and El,  Â£2, . . , Ee, let those points be Ql , . . . , Q N .  N is the number of different points 
of them. Then by Theorem 3, PM is reduced to the following messenger boy problem PE. 

where P* = (X*, y*) and 

Linear Programming type formulation of PE is: 

Minimize z , 
P* 

(3.17) 

subject to ~ A ( P * ,  Qi) + l& <: z ,  i = 1 , .  . . , N . 

4 Solution Procedure for PM 
In this section a solution procedure for PM is given. As presented in the preceding 

section, PM can be reduced to the equivalent location problem PE, then we give a solution 
procedure for PE in order to solve PM. 

Let Ci denote A-circle with radius k i  at center Q . Then PE is further reduced to 
the determination of minimum radius A-circle covering all A-circles Cl , . . . , CN. In order 
to find this minimal covering A-circle, we define 

CAC.7 Cj)  {P s2 1 d ~ ( Q i ,  P) + k  = ~ A ( P ,  Q,) + k,} , (4.1) 
for i # j , z ,  j = 1 ,  ..., N .  
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C^{C , C ) is a bisector between Q and Q j taking account of the distance to hospitals. 
(See Figure 8) 

Figure 8. A bisector between Qa and Qt taking 
account of the distance to hospital 

Then we have the following solution procedure. 

Step 1: 

Step 2: 

St,ep 3: 

Step 4: 

Solution Procedure 
Draw A-circle Cl , Cz , . . . , CN a,nd let CO denote the biggest A-circle which has the 
largest radius among C , i = 1 , . . . , N. If CO covers all other Ci  , a # 0, then CO is 
the optimal A-circle. Stop(Qg is an optimal location of the ambulance service station 
(X* 9 P*)), 
Otherwise, find CS and C such that 

max{d~(Qi ,  Q j ) + k i + k j l i # j ,  i ,  j =  l ,  ..., N} 
= ~ A ( Q ~ ,  Qt) + ks + h  

and go to Step 2. 
Let PO be the intersection of CA ( C  , C ) and the line segment connecting Q with 
Q . Draw the A-circle CO centered at PO with minimum radius covering CS and Ct . 
If CO covers all Ci  , then CO is an optimal A-circle. Stop (Po is an optimal location of 
the ambulance service station (X* , y*)). 
Otherwise, choose one A-circle Cu which is not covered by CO and go to Step 3. 
Let PO be a intersection of CA(Cs , C \ ) ,  CA(Ct  , C u )  and C A ( C u ,  C S ) .  
Draw A-circle CO covering C , C , Cu with minimum radius centered at PO, that is 
externally tangent to these three A-circles. 
If CO covers all C i  , then CO is an optimal A-circle. Stop(Po is an optimal location of 
the ambulance service station (X* , v*)). 
Otherwise, choose one A-circle CV which is not covered by Co. 
Draw a half line from PO which through Q v  and let a intersection of the line and 
boundary be which is farthest from PO. By same manner obtain Z , Z and Zu. 
Let D = Zv and farthest point from D among Z s  , Z and Zu be A. Divide a plane 
X into two half plane by line through both A and PO. Let a point which does not 
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belongs to the same half plane with D be C. 
Let A = Q s  , C = Q t  and D = Qu and return to Step 3. 

Theorem 4. If a set A is fixed, the above solution procedure finds an optimal location of 
a facility in at most O(max(n , m)3 - T) computational time, where T is the computational 
time constructing circum A-circle covering given three A-circles. 

(Proof) By [16], a Voronoi diagram with A-distance for a set of m points in the plane 
can be constructed in O(m log m} time. The number of intersection points of Voronoi edges 
and boundary of X is 0 ( m )  if a set A is fixed. Thus N is O(max(m, n)). Validity of the 
solution procedure is clear from the above discussion, since certain three A-circles determine 
the optimal circum A-circles. In the worst case, 0 ( N 3 )  triplets of A-circles are tested for 
circum A-circles. Thus we have Theorem 4. 

Q.E.D. 

The following example illustrates the behavior of our solution procedure. 

EXAMPLE 
Consider the shade area &V2V3V& and two hospitals in Figure 9. 

Hi  , H2 : Hospital 

Figure 9. An example of the polygonal area X 

A is given in Figure 10. N = 7(= 5 + 2). 
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Figure 10. A= {O , 45, 90, 135 degree} 

Figure 11 illustrates Cl , . . . , C$ in Step 1. 

Figure 11. First iteration of Step 1. 
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Thus we set s = 1 ,  t = 4 and go to Step 2. 
Figure 12 shows the result of Step 2 ,  Step 3 and Step 4. C2 and C3 are not covered by Co. 
We choose Cg as Cu and go to Step 3. As a triplet of A-circle, we choose Cl ,  C3 and C4 
and draw a circum A-circle in Step 3. 

Figure 12. First iteration of Step 2, Step 3 and Step 4. 

Figure 13 shows the result of Step 3. C2 is not covered by CO again. So C2 is chosen as 
and go t,o Step 4. In Step 4, we choose CS = Cl , Ct  = C 4 ,  Cu = C2 and return to Step 3. 
In this iteration of Step 3,  we obta,in circum A-circle CO c:overing all C . Figure 13 shows 
this and PO is an optimal location (X* , g* )  of the ambulance service station. Stop. 
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Figure 13. An optimal location of the facility. 

5 Summary 
We have considered a. rninimax facility location problem with A-distance. This is an exten- 
sion of the rectilinear case discussed in [3]. But we could not find a suitable rule to choose 
a triplet of A-circles in Step 4 of our solution procedure. So, basically, we must check all 
triplets of A-circles -for covering all C 'S, in order to find an optimal location. 
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