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Abstract We analyse the reliability of Gaver's parallel system sustained by a cold standby unit and 
attended by two identical repairmen. The system satisfies the usual conditions (i.i.d. random variables, 
perfect repair, instantaneous and perfect switch, queueing). Each operative unit has a constant failure rate 
but a general repair time distribution. Our reliability analysis is based on a time dependent version of the 
supplementary variable method. 

We transform the basic equation into an integro-differential equation of the (mixed) Fredholm type. 
The equation generalizes Takacs' integro-differential equation. 

In order to present computational results, we outline the solution procedure for a repair time distribution 
with an arbitrary rational Laplace-Stieltjes transform. A particular numerical example displays the survivor 
function with the security interval that ensures a reliability level of at least 95%. 

1. Introduction 
Two unit parallel systems (for instance, two power generators, in active redundancy [I], 
connected with the light-plant of a tunnel) are widely used to increase the reliability and 
safety of industrial plants. Gaver's two-unit parallel system [g] sustained by a cold or warm 
standby unit and attended by a single repair facility, henceforth called an S-system, has 
received considerable at tent ion [4-81, [l 1- 121. 

As a variant, we analyse the reliability of Gaver's parallel system sustained by a cold 
standby unit and attended by two identical repairmen, henceforth called a T-system. The 
T-system satisfied the usual conditions (i.i.d. random variables, perfect repair [10], instan- 
taneous and perfect switch [l], queueing). 

Each operative unit has a constant failure rate but a general repair time distribution. 
Both repairmen are jointly busy, if and only if, at least two units are in failed state. In any 
other case, a t  least one repairman is idle. 

It is evident that the T-system reduces the waiting time for repair with respect to a 
similar S-system. Therefore, a T-system improves the reliability of the corresponding S- 
system. 

Our reliability analysis is based on a time dependent version of the supplementary vari- 
able method. We transform the basic equation into an integro-differential equation of the 
(mixed) Fredholm type. The equation generalizes Takics' integro-differential equation, e.g. 

121- 
In order to present computational results, we outline the solution procedure for a repair 

time distribution with an arbitrary rational Laplace-Stieltjes transform. A particular nu- 
merical example displays the survivor function with the security interval I that ensures a 
reliability level of at least 95%. 
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2. Formulation 
Consider a T-system satisfying the usual conditions. 

Each operative unit has a constant failure rate A > 0 but a general repair time distri- 
bution R(*), R(0) = 0. Let R ( Â ¥ )  1 - R(*). Without loss of generality, (see forthcoming 
remark) we may assume that R(*) has a bounded density function defined on [O, cm). 

Let {Nf, t >: O} be a stochastic process with arbitrary discrete state space {A, B, C, D} C 
[O, cm) characterized by the following events: 

{Nt = A} : "Both repairmen are idle at time t ,  i.e., two units are operating in parallel 
sustained by a cold standby unit ." Fig. 1 shows a functional block-diagram of the T-system 
operating in the renewal state A. 

operative unit 1 idle repairman 1 

unit in 
cold standby 

operative unit 2 idle repairman 2 

D 
Fig. 1. Functional block-diagram of the T-system operating in state A. 

{Nf = B}: "One repairman is busy a t  time t ,  i.e., two units are operating in parallel 
and one unit is in repair." Note that by assumption, both repairmen are statistically equal. 
Hence, it is by no means necessary to specify which repairman is busy or idle at time t. 

Fig. 2 shows a functional block-diagram of the T-system operating in state B. 
{Nt = C}: "Both repairmen are jointly busy and only one unit is operative at time t." 
Fig. 3 shows a functional block-diagram of the T-system operating in state C. 

operative unit 1 

D 
busy repairman 

D 
operative unit 

D 

busy repairman 1 

operative unit 2 busy repairman 2 

D D 
Fig. 2. Functional block-diagram of the Fig. 3. Functional block-diagram of the 

T-system operating in state B. T-system operating in state C. 

{Nt = D}: "Both repairmen are jointly busy and a failed unit is waiting for repair at 
time t." 

We define the stopping time 

6 := inf{t > 0 : Nt = D 1 No = A}. 

In reliability engineering, 6 is usually called the first system-down time. System's sur- 
vivor function is defined by S( t )  := P{% > t}. 
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It is plain that the behavior of the process {Nt,t > 0} after 19 is irrelevant for the 
analysis of the first system-down time. Therefore, we consider the system-down state D as 
an absorbing state. 

A Markov characterization of the process {Nt,t > O} is piecewise and conditionally 
defined by: 

{Nt, t > O}, if Nt = A (the renewal state), No = A. 
{(Nt, Xt), t 2 O}, if Nt = B, where Xt denotes the elapsed repair time of the failed unit 

in progress at time t. 
{(Nt, Xt, K), t > O}, if Nt = C, where (Xt, K) denotes a random permutation of the 

elapsed repair times of failed units in progress at time t. 
{Nt,t > O}, if Nt = D. 

The state space of the process is given by 

Let p ~ ( t )  := P{Nt = D} and for K = A, B, C let 

pB(t, x)dx := P{Nt = B,W : 0 < U < t, Nu # D, X < Xt <, X + dx}. 

pc(t,x,y)dxdy:=P{Nt=C,Vu:0<u<t,Nu#D,x<Xt<x+dx,y<~<y+dy}. 

3. Integro-differential Equation 
In order to construct a set of differential equations, we apply a time dependent version of 
the supplementary variable method. For t > 0, respectively t > X > 0, we obtain the 
Kolmogorov-type equations 

A conditional probabilistic argument reveals that 

PC@ - y, X - y, 0)e-^ 
R- (x)R- (Y) , i f t > x > y > O ,  
R-(x - Y) 

p c ( t - ~ , 0 , y - X ) e - ^ ~ - ( ~ ) ~ - ( ~ ) ,  if t W x > O ,  
R-(Y - X) 

0 otherwise. 

Since D is an absorbing state, we have 
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The boundary conditions are 

2ApB(t,x), if t >, x > O ,  
PA(O) = 1, p ~ ( t , O )  = 2 A p ~ ( t ) ,  2!pc(t,x70) = otherwise. 

In order to simplify the equations, let 

But note that pc(u, v,0) = pc(u,O7v). Clearly, 

if u > v > O ,  

otherwise. 

if t > x > O ,  
otherwise. 

Whence, by equation (l), 

Moreover, 

In order to simplify the integro-differential equation (2), we simply remark that on the 
one hand, 

While on the other hand, 

So that, 

Observe that @(t, 0) = 2A2pA(t), t > 0. 
Laplace transforms of functions, with respect to t ,  are denoted by the corresponding 

character marked with an asterisk. For instance, 

But note that P m  
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A Laplace transform technique, sustained by Fubini's theorem and Leibnitz's differentiation 
formula, applied to equations (3),  (4) and (5) (see Appendix 1) yields the following 

Result For s > 0, 

where **(S, X), X > 0, satisfies the integro-differential equation 

with boundary condition **(S, 0) = 1. 

4. The Survivor Function 
From the relation 

t 

PD (t) = A L PC (u)du7 

we obtain 
E e-" = Ap; (S). 

However, the evaluation of ^(S) as a functional of **(S, a)  is quite complicated. There- 
fore, in order to derive a simpler formula, we invoke the system of equations 

Eliminating pc{t ) , reveals that 

Note that S(t) is uniquely determined by the Laplace transform 

5. Solution Procedure 
In order to introduce the solution procedure, we first transform the Fredholm equation into 
a Cauchy integral equation. 

For Re ec? > 0, let 

Applying Fubini's theorem and Hewitt's inversion formula to equation (6) (see Appendix 2) 
reveals that 
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Remark It is possible to prove that the Cauchy integral equation also holds for an 
arbitrary repair time distribution. Unfortunately, the solution of the equation is, in general, 
extremely formal (cf. [l 5, pp. 496-4971). 

In order to  present computational results, we outline the solution procedure for a repair 
time distribution with an arbitrary rational Laplace-Stieltjes transform, i.e. let 

where Qp^Y p = n,  m; m < n is a polynomial of degree p. 
Cox [3] has shown that this family is surprisingly large. 
Applying the residue theorem yields 

where { A k ,  ReAk > 0; k = 1,2,  - , n} are the n roots of the equation Qn(-z) = 0. 
Note that  the "first" singularity, i.e. the root nearest to the origin, is always real [16]. 
Evaluation of the sum by the methods of residues (called elementary operations) yields 

a weighted mixture of rational transforms. The "weights" are functionals of the form 

where K j  is the multiplicity of the root A,. 
The functionals are called operating characteristics [13]. Further elementary operations 

(characterized by the multiplicity of the roots) applied to the equation 

yields a system of n linear equations in the n unknown operating characteristics. The 
solution of the corresponding matrix equation determines @(S, W )  uniquely. However, it is 
by no means necessary to invert @(S, W). As a matter of fact, the required integrals 

L m @ * ( s 7 x ) d ~ ( x )  and Lm@*(s7x)R-(x)dx,  

are easily evaluated in terms of the operating characteristics! So that I 3 e s e  is completely 
determined. 

6. Numerical Example 
Let 

where, without loss of generality, A l  < - < A n -  
We do not require that all pk are positive (which is the case in the family of hyper- 

exponentials). As R(t)  is supposed to be a probability distribution of a positive random 
variable, we must have 

n 
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Note that, for instance, 

is log-convex, so that R belongs to the important family of repair time distributions with 
an increasing repair rate [14]. Clearly, 

Whence, 

Inserting U J  = Aj;  J = 1,2, - - , n into equation (8), yields the system of n linear equa- 
tions, 

in the n operating characteristics {@(S, A,); j = 1, , n}. Observe that 

Hence, 

It is not hard to verify that E e s e  is a rational transform. 
Consequently, the inversion procedure requires the solution of a polynomial equation. 

Apart from the (uninteresting) case n = 1, the degree of our polynomial equation is not less 
than six. According to Abe17s theorem, a general polynomial equation of degree d > 5 is not 
solvable by squarerooting. So that, in general, numerical methods (e.g. [17]) are at order. 

Let, for instance, n = 2; A = 0.1; Al  = 2; X 2  = 20; pi = 1.1; p2 = -0.1. Numerical 
inversion of the Laplace transform 

yields 

Figure 4 displays the graph of S ( t )  restricted to the interval I that ensures a required 
reliability level of at least 95%. 
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Fig. 4. Graph of S( t )  restricted to the security interval I. 

7. Conclusion 
The reliability analysis of Gaver7s parallel system sustained by a cold standby unit and 
attended by two (statistically) identical repairmen requires the introduction of an appropri- 
ate stochast ic process endowed wit h probability kernels satisfying general Kolmogorov-type 
equations. 

The basic function satisfies the Fredholm integro-differential equation 

In order to avoid the intricate technical manipulations related to convolutions, we have 
transformed the Fredholm equation into a Cauchy-type integral equation. But the solution 
is, in general, extremely formal. However, the solution procedure for a repair time distribu- 
tion with an arbitrary rational Laplace-Stieltjes transform (a so-called Coxian distribution) 
is fairly simple and quite suitable for a standard computer routine. 

Finally, we remark that repair time distributions with a complicated LST (such as the 
log-normal and Weibull distribution) could be substituted by suit able approximations com- 
posed of Coxian distributions, e.g. [15, Ref 321. 

Consequently, a concatenation of our procedure and the proposed approximation tech- 
nique provides a powerful tool to solve very general problems in reliability engineering. 

Appendix 1 
The following technical manipulations are justified by Fubini7s theorem and Leibnitz's dif- 
ferentiation formula: 
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00 00 

x)dt = s e-"@ (t, x)dt - e-"@(X, X). (by partial integration) L 
00 9 00 

e -^ - l ax @(t,x)dt = -^l e-s t@( t , x )d t+e- sx@(x , x ) .  (by Leibnitz) 
QX t=sa 

By definition of @*(S, X)  and the preceding operations, we obtain for s > 0, 

where @*(S, X), X > 0, satisfies the equation 

with boundary condition @*(S, 0) = 2A2p>(s). 
Finally, invoking the obvious substitution 

yields the announced result. 

Appendix 2 
The following operations are justified by Fubini's theorem and Hewitt's inversion formula: 

= /" / Q* (S, y - x)e-(wÂ¥^s+^^dxd~(y (by Fubini) 
y=O x=O 

1 00 

= -1 r e-i' Q* (S, y - ~ ) e - ( ~ + ~ + ~ ) ~ d x d  ewdR( y)dn (by Hewitt) 
27ri y=O 

The symbol C denotes the Cauchy principal value of the integral along the imaginary 
axis. On the other hand, 

Whence, 
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