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Abstract We investigate the sensitivity analysis for a discrete-time queueing system using perturbation 
analysis. In discrete-time queues, not only the sample performance function but also the sampled event 
lifetimes are essentially discontinuous in some system parameter, and therefore the well-known infinitesimal 
perturbation analysis (IPA) technique fails to apply to even a simple single-server queue. We here apply 
an idea similar to the smoothed perturbation analysis for probabilistic routing problem (or equivalently, 
negative customer rare perturbation analysis), and under the stationarity and ergodicity assumptions, we 
obtain the strongly consistent estimator. Some simulation experiments demonstrate the validity of our 
estimator. 

1. Introduction 
With the development of digital information and telecommunication systems, discrete- 
time queueing systems have been actively studied in these days (cf. Miyazawa and Takagi 
eds. [22]). In this paper, we consider the sensitivity analysis for a discrete-time queue- 
ing system. For continuous-time discrete event stochastic systems, a variety of techniques 
for sensitivity estimation have been proposed and studied in this decade (see e.g. Glasser- 
man [12], and Rubinstein and Shapiro [25]). Among them, the infinitesimal perturbation 
analysis (IPA) is known as the most basic and efficient method, but in its application, it re- 
quires the strict condition on the continuity and differentiability of the sample performance 
function ([12]). To cover a broader class of performance measures and systems, smoothed 
perturbation analysis (SPA) has been introduced by Gong and Ho [l51 and further extended 
by Fu and Hu [g, 101. The likelihood ratio/score function (LRISF) method is also applicable 
for broader class of systems, but it is known that the variance of the estimate grows along 
with the run length of the simulation and hence this method requires relatively short regen- 
eration periods ([25]). Another powerful method is the rare perturbation analysis (RPA); 
the basic idea of this approach is to compare two rarely different processes, which are not 
infinitesimally close when different, by considering the infinitesimal rate of change in the 
processes. This technique was originally developed as a kind of SPA for the derivative esti- 
mation with respect to the admission probability of a queue with routing control (Gong [l4]) 
or as a negativelphantom RPA for derivative with respect to  the rate of a Poisson arrival 
process (Brkmaud and Vtizquez-Abad [7]). And further developments include the virtual 
customer RPA (Baccelli and Bremaud [l]) and maximal coupling RPA (Brkmaud [3] and 
Bremaud and Massoulic? [6]). Brkmaud and Gong [4] give the unified view and the relation of 
these sensitivity estimation techniques (see also the recent monograph by Fu and Hu [I l l ) .  

When we try to apply the PA techniques to  discrete-time systems, we are confronted 
with the problem that not only the sample performance function but also the sampled event 
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lifetimes are essentially discontinuous in the continuous parameter of interest. Therefore, 
the IPA technique fails to apply to even a simple single-server queue. In this paper, we treat 
a discrete-time single-server queue and, using an idea similar to the SPA for probabilistic 
routing (or equivalently, negative RPA), derive the derivative estimator for the steady-state 
expectation with respect to the parameter of the service time distribution. We should note 
that a similar problem about the continuous-time queue with two different service times 
is considered using structural IPA (SIPA) by Dai and Ho [8] and that a similar idea is 
also found in Kesidis et al. [16]. We proceed within the stationarity framework and, under 
the ergodicity assumption, obtain the strongly consistent derivative estimator. As for the 
PA in the stationarity and ergodicity framework, Konstantopoulos and Zazanis [17, 181 
and Brkmaud and Lasgouttes [5] derive the IPA estimators for the stationary and ergodic 
G/G/l/oo queue using the Palm inversion formula, and Miyoshi [24] extends them to the 
SPA for multiclass queues. Brkmaud and G.ong [4] give the stationary SPA (RPA) formula 
for the probabilistic admission control problem of a GIG11 queue. 

The rest of this paper is organized as follows: In the next section, the discrete-time 
queueing model we consider is detailed with introducing some notation, where the formula- 
tion is due to the Palm framework (see e.g. Baccelli and Brkmaud [2]). In Section 3, under 
some appropriate assumptions, we derive the derivative expression which is unbiased in the 
steady state, and in Section 4, we use the ergodic theorem to obtain the strongly consistent 
estimate. Section 5 contains some results of simulation experiments, which demonstrate 
the validity of our estimates. Finally, it is slightly discussed about the convergence rate of 
derivative estimates in Section 6. 

2. Model Description 
Consider a single-server queue with an unlimited buffer. Let {Tn}nEz be a sequence of arrival 
times of customers to the system, where each Tn takes its value on the set of integers Z.  
Conventionally, we assume that {Tn}neZ satisfies 

lim Tn =+m. 
n+Â± 

The first property means that the arrival process is simple, that is, only one customer arrives 
at  a time, and the second says that there are only finite number of arrivals on a bounded 
interval. Let {rn}nez denote the interarrival time sequence satisfying Tn = Tn+1 - Tn and 
let N be the counting measure on (z, 23(Z)) with respect to {Tn}nezl that is, 

N(A) = lA(Tn) for A 6' B(Z). 

For each n E Z, the nth arriving customer requires the service of ~ ~ ( 0 )  in discrete-time 
units, where 0 is a real parameter in an interval 6 C R. We assume that service times 
are independent, identically distributed (i.i.d.) and independent of the arrival process. The 
server attends to one unit of work (if any) in a unit length of time. Let G(-,  6) on R+ be 
the common distribution function of service times assumed right continuous with left limits. 
G( - ,  0) is piecewise constant and its discontinuities are in the set L C M = {l, 2, . . . }. Let 
g(x, 0) = G(x, 0) - G(x-, 0) for any X > 0, that is the jump size of G at  X. Note that 
g(x, 0) takes positive value only on L and, for each k E C, g(k, 0) represents the probability 
that the service time of a customer equals to k. In order to define the probability space 
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independent of the parameter 0, we introduce the inverse function of G ( - ,  0) on [O, l], as 
usual in the perturbation analysis literature, 

Applying the sequence {Un}ne^ of independent and uniformly distributed random variables 
on [O, l], also independent of {Tn}nEzl the n th  service time is then given by 040)  = 

G 1 ( U n ,  0) and is indeed distributed according to  G ( - ,  0). By the definition, on(0) takes 
its value on L Choosing the sample space L! such that  a sample point W = {(Tn, Un)}nez, 
we define the probability space (Q, 7, P) independent of 0. Let { 1 9 , } ~ ~ ~  be the family of 
measurable shift operators on (f2, 3") satisfying 

and we assume that  the sequence {(Tni Un)}nez forms a discrete-time stationary marked 
point process, that  is, 

We further assume that (N, P)  has a nonzero intensity A = E[N({O})] = P(To = 0) and 
that (P ,  d.) is ergodic. We note by PO and EO the Palm probability with respect to (N, P) 
and the corresponding expectation. In the case of simple discrete-time point processes, it 
clearly follows that  PO(A) = P ( A  1 To = 0) for any A C 3. Note that  {(rn1 Un)Jnez is 
compatible with {dTn}nezl that is, ( , ~ n ,  Un) = (70, Uo) o & ,  and P0 is invariant with respect 
to  gTn9 n E Z.  Now, in order to  apply the perturbation analysis, we impose the following 
assumption on the service time distribution: 
Assumption 1 (i) For any X G R+, G(x, 0) is differentiable and Lipschitz in 0, that  is, 

there exists K q )  such that ,  for any O1, G G, 

(ii) Set C does not depend on the value of Q; 
(iii) Let 6 = supsEe G^ (Un, 0) for each n E Z. Then, A EO [Q,;] < l. 

Assumption 1(i) ensures the appropriate smoothness of the service time distribution with 
respect to 0, and l(ii)  says that the discontinuities of G(x,  0) are preserved from the pertur- 
bation in 0. Assumption l(iii) leads to the existence of the stationary and a.s. finite work 
process for the queue with input {(Tn, Mna (c.f. Loynes [20]). Since the work process 
with service times { C T : } ~ ~ ~  dominates that with {ffn{Q)}&, there exists the stationary and 
a.s. finite work process for any 0 C G. Let {w(0)}icz be the work process in the system. 
Note that  W#) takes the value on Z+ and, as long as Wi(0) > 0, it decreases by one 
time unit a t  a unit of time between two successive arrivals, that is, the process {WJQ)Jiez 

+ satisfies Wi(ff) = (0) - l) + l>Ez on(@) l(i=Tn( for z E Z,  where X+ = max(x, 0). Our 
performance measure is the functional J (0 )  = E [f ( ~ ~ ( f f ) ) ] ,  where f is a nondecreasing 
mapping from Z+ to R&. In the next section, we intend to derive an unbiased estimator for 
the derivative d J (0 )  /dQ. 

3. Derivation of the Estimator 
In the most of the following, we focus our interest on the right-hand deriva,tive, that is, for 
A6 (> 0) such that 0 + A6 E @, we estimate, 

d+ J (0) 
= lim [f (WO(0 + 4) - f (Wo(0))] 

A6 d0 m10 
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Figure 1: Change of a service time due to  a perturbation 

The left-hand derivative could be derived in the similar manner. For simplicity of notation, 
we write Af (wi (Q)) = f (Wi(Q + AS)) - f ( ~ ~ ( 0 ) )  for each i E Z, and similarly, for a 
generic function a of Q, we write Aa(0) = a(O + AO) - a(0). Let {Rn (Q)}nez be the sequence 
of construct ion points a t  which the arriving customers find the system empty, satisfying 
Ro(Q) 5 0 < Rl (0). Under the stationarity and Assumption l (iii), there are infinite number 
of construction points on the integer line for any 0 E 0, and we can keep the realization of 
the construction points generated by {(Tn, ~ i ) } ~ ~ ~  in spite of the introduction of AO, though 
the additional construction points are possible, that is, noting by {R*}nEz the construction 
points generated by {(Tn, <7i)}nez, we have {R*}nez {Rn(6)}nez for any 0 E 6. NOW, we 
further assume the following: 
Assumption 2 (i) Let denote the work process with input {(Tn, o , " ) } ~ ~ ~ .  Then, 

E0 [{ l̂ < 00. 
(ii) For some 71 (> O ) ,  E' [exp {71 N ([R;, R;)) }] < m. 

(iii) For any 6 E G, Kg(.) in Assumption 1(i) and for some 7~ (> O),  
Kg(k)  + Kg@-) 

xteLexp{72 g ^  $1 } L 0 7  0) < 00- 
Assumption 2(ii) ensures the finiteness of any order moments of N ([R;, R')) and (iii) also 
says that any order moments of { K ~  ( 0 0  (0)) + ( ( ( ~ ~ ( 0 )  -) }lg (ao (S), Q) are finite. 

In order to apply the idea of SPA, define the sub-o-field of 3'0 (= o({A n {To = 0}lA E 

F})) by 

Note that, on fto = {TO = O}, the process {Wi(0)}ia is (Z(Q), PO)-measurable but {Wi(Q + 
AQ)}i^i is not because we can not know whether on(0 + AO) = an(Q) or not from the 
information of Z(0). Before proceeding to our main statement, we consider the conditional 
probability given Z(0) with which some service times change due to  the perturbation in 0. 
Due to the perturbation of size AQ, each value of G ( x ,  m) is shifted by AG(x, Q).  Figure 1 
illustrates the change of a part of the service time distribution function. By the help of this 
figure, we see that the conditional probability of the event {aJQ + AS) # on (Q)} given on (Q) 
is expressed by 
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where X = - min(x, 0) and a A b = min(a, 6). In the above expression (also in Fig- 
ure l), A G ( o ~ ( Q ) ,  Q) means AG(x,  Q) 1 x = ~ ~  (0) that is, the A-operation does not work for 

the argument on(0). We believe that no confusion arises and adopt this abuse of notation 
hereafter. From Assumptions 1(i) and 2(iii), when A6 is small enough, we can regard that  
AG(on(Q), Q )  + AG(on(0)-, 9)' < g ( ~ n ( ~ ) ,  9) a.s., and in the rest of this paper, we 
consider only this case. In such a case, we can say more that 

on($ + AQ) = max{k â Â : k < %(Q)} 1 On(Q)) = 
^G ( o n  (Q) - 7 Q) + 

(3.3b) 
g(on(Q), Q) 

Since the dominant construction points {R*}nEz is preserved from the perturbation in Q, the 
effect to Wo(0) due t o  the perturbation depends on A0 only through the change of service 
times of customers arriving during [R^, 01. Let No = N([R& O]),  the number of customers 
arriving by the time origin from the beginning of the current busy period generated by 
{(Tn, C J : ) } ~ ~ ~ .  Note that ,  using this notation, RE = T-N,,+i and that  No is Z(0)-measurable 
for any Q E 6. Let No = {-No + 1, . . . , O}. And we write for A C No, 

Then, under the independence of {Un}nEZ, we have from (3.2), 

for a sufficiently small N. Now, we are a t  the position to present our main statement of 
this section: 
Theorem 1 Assume that Assumptions 1 and 2 hold. Then, J(0)  = E[/(w~(Q))]  admits a 
right-hand derivative with respect to 0 given b y  

where aeG(-,  0) = 9G(- ,  Q)/9Q. Also, p f (Wd0; n)}  = f (w:(o; n))  - f (wi(Q)) ,  and 
W*; n)  [resp. WL(0; n)] represents the value of Wi{Q) given that the service time of 
the nth customer is min{k E L : k > on(^)} [resp. max{k C L : k < on(Q)}] (but if 
on(Q) = min{k ? L}, then Wc(0;  n)  = Wi(Q)). 

Note that  each infinite summation in the right-hand side of (3.5) contains only a finite 
number of nonzero terms, which suggests the easy implementation of the estimator. Indeed, 
we have for z > To, 
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idle times 

(a) Sample paths of Wi(0) and W+(Q; 0) 

(b) Sample paths of Wi(0) and W;(O; 0) 

Figure 2: Relation between the nominal and perturbed sample paths 

b where ~ ( [ a ,  b); 0) = l{wi(Ãˆ)=o is the cumulative idle time from a to 6 (xi^ = 0 if 
b < a),  and furthermore if oO(0) # min{k ? L}, 

W; (Q; 0) = Wi (Q) - min (W, (Q) - l) + A (00 (Q) - max{k E L : k < 00 (Q) }) , 
Jâ‚¬[To, 

where minjEA = oo if A = 0. Thus, both W: (0; 0) and W (Q; 0) respectively couple to 
W,{Q) not later than z = R; and /^ f ( ~ ~ ( 0 ;  0)) vanishes (see Figure 2). The inside of 
the expectation in (3.5) represents the conditional rate of the service time change of one 
customer with respect to  Q times the effect of such a service time change. Such a form of 
the estimate is common to the conditional Monte Carlo derivative estimators ([Ill). 
Proof: Similarly to the proofs for other perturbation analysis formulae, the key tool is 
the dominated convergence theorem. Applying the discrete-time version of Palm inversion 
formula and then characterizing by D(A0, A; No), we have 
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where the second equality follows since T>(AQ, A; No) 's  are pairwise disjoint. For simplicity 
of the notation, we write 

Since No is (Z(O), PO)-measurable, using the conditional expectation given Z(Q) , 

where &(Q; A) represents the value of Afa{Q) on V{d0, A; No)  n Z(Q). Note that,  once 
V(A9, A; No) is given with a sufficiently small AQ, the value of mQ; A) no longer depends 
on the size of A6 since the service times of customers with indices in A change only to the 
possible adjacent values (see (3.3)). This is why the symbol A still remains in (3.5) even 
after A6 Ã‘ 0. Using (3.4) for sufficiently small A6, the inside of the expectation leads to 

I -  
( l -  

AG(am(Q),  ( ? )  + AG(om(Q)-, Q)' 

mdo\{n} g(~m(Q) ,  Q) 

In order to apply the dominated convergence theorem, we find the bounds of the three terms 
of the last expression of (3.6)) respectively. Using the notation of 

0 - max 
K g  ( a n  (Q)) + K g  ( a n  (Q) -) 

( n~N0 ~ ( Q J Q ) ?  Q) 1 
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we find a bound of the first term as, 

5 ~ 0 E  
Kg (on (Q)) + Kg (on (Q)-) 

nâ‚¬ g (on(0) 7 @) 

T1-l where E = f (W:). From the Schwarz inequality, 

and the first term of the right-hand side is finite from Assumption 2(i). The same procedure 
leads to 

and the both terms are finite from Assumption 2(ii) and (iii)? respectively. For the second 
and third terms of (3.6), we have 

12nd term of (3.6) 1 5 lV0 E Kz(0) {l - (l - K:(Q) ~ 0 )  

5 E N~ ( N ~  - I)  K:(Q)~ ~ 0 ~ ;  
No 

13rd term of (3.6) 1 5 E (T) ( K i ( 0 )  ~ 0 ) ' .  
1=2 

Therefore7 from Assumption 2, the expectations of the absolute values of th  
third terms of (3.6) are both bounded by o(A0). Hence7 we have 

e second and 

Now7 applying the dominated convergence theorem and exploiting the fiTn-invariance prop- 
erty of PO, we have 

where we use that  0 E [max{R& 5 T-n}7 TWn] implies TPn E [0, R;). Finally7 splitting 
Af-n(r3; {0}) according to (3.3) and taking the statement about infinite summation under 
Theorem l into account7 we obtain (3.5). 

In entirely the same way7 we have the left-hand derivative version of Theorem l :  
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Theorem 1' Under the same assumptzons as Theorem 1, we have 

Remark l When mapping f is finite, Assumption 2(i) is replaced by 
(i') EO [ri] < CO. 

When not the case, for instance? Assumption 2(i) can be replaced by 
(i-a) EO [rt] < col 

(i-b) EO [f (W; ( o ) ) ~ ]  < CO. 

Remark 2 (Monotonous G ( - ,  0)) If the distribution function G(.? Q) is nondecreasing 
in Q ?  then &G(.? Q) 2 0 and we have 

Remark 3 (Multiple Arrival Points) In this paper, we treat only the case of a simple 
point process, but it would not be difficult t o  extend the result to the case of multiple point 
processes by using the Palm probability with respect to such a process in Miyazawa and 
Takahashi [23]. 

4. Implementation of the Estimator 
In this section? under the ergodicity assumptionl we derive the strongly consistent estimator 
for d+ J (Q) /d0  based on Theorem l. The left-hand derivative version is omitted since it can 
be obtained in the same way. 

Theorem 2 Assume that Assumptzons 1 and 2 hold. Then, under the ergodiczty of ( P l  19~))  

d+ J (Q) l 
= lim - X &G(on(Q)? 0)- 

do m+m T~ n=o g (on(Q)?0)  . i2Tn X A+f (Wi(Q; n ) )  

+ &G ( o n  (Q) Q) + P-ass, (4.1a) 
g(on(Q) ,Q)  

Moreover, zf G ( - ,  Q) zs nondecreaszng zn 0) then 

d+ J (0 )  1 m-1 3oG(on(0)-l Q) 
= lirn - - A- f (Wi(@; n))  P-as. 

dQ m+m Tm n=o g (on(Q)?Q)  i2Tn 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



SPA of a Disc~ete-Time Queue 161 

Proofi For simplicity7 we show equation (4.1b) only. From (3.8a)? the cross-ergodic theorem 
gives 

d+ J(Q) 1 m-1 ~ O G  (on (Q) - 7  Q) 
do 

= A lim - X 
m+cx m X A- f ( ~ ~ ( 0 ;  n)) P-ass. 

n=o g(on(Q17 Q) i2Tn 

On the other hand7 

l m m A = -  = lim = lim - P-a.s.? 
E0 [TO] m+m xr&l Tn m+m Tm 

and the proof is completed. 
Theorem 2 says that we can obtain the strongly consistent estimator for d+J(Q)/dQ from 

the single-pat h calculation (as mentioned in the previous section? each infinite summation 
in (4.1) contains only a finite number of nonzero terms). 

5. Simulation Experiments 
In order to show the validity of our estimator, we make simulation experiments for some 
cases. In the following examples? we take f as the identity mapping, that is7 J(0) = 
EIWo(Q)]. In Example l, we treat the case where the analytical result is available7 and thus 
we compare the experimental results from our estimates with the analytical results. The 
analytical values are computed from the formula in Takagi [26]. In Example 2> we treat 
the case where the arrival stream has self-correlation and compare the experimental results 
from our estimates with the values from the symmetric finite dzflerence (FD) estimates that 
are calculated by the following; 

where represents the estimate from direct simulation. The F'D estimator is indeed 
biased but known as the last resort to obtaining the derivative estimates. We run the 
simulation for 807000 busy periods in each sample path and obtain the estimates with 95% 
confidence intervals taken from 30 independent replications. The experiments are carried 
out for three different values of traffic intensity p (= AE0[oo(Q)])7 corresponding to light 
traffic (p = 0.2) medium traffic ( p  = 0.5) and heavy traffic ( p  = 0.8) by adjusting the value 
of A for given Q. 

Example l (Geo /Geo / l  queue) In this example, the interarrival and service times of 
customers are both independent and geometrically distributed with the mean l / A  and l/Q7 
respectivelyl and the interarrival and service time sequences are also independent each other. 
The value of 0 is fixed at  0.5. In this model7 for all n E Z 7  

and we obtain the analytical results from [26] as 
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Table l :  Estimates for a Geo/ Geo/l queue 

On the other hand, in (4.1b) with L = N and f being the identity mapping7 A-Wi(Q; n) = 

l{minjc!Tn,i) wj ( Q I > ~ ]  for on (Q) > l and z 2 Tn since the service time of customer n reduces 
by one time unit, and therefore, our estimate becomes 

In Table l, we find that  our estimates have the good agreement with the analytical results. 

Example 2 (TES- Geo/ G e o l l  queue) In this example, the service times of customers 
are distributed independently and geometrically as in Example l,  but the interarrival times 
are distributed according to a correlated geometric distribution; that  is, using the transform 
expanded sample (TES) method (Melamed and Hill [21]), we generate an interarrival time 
sequence {rn}n20 that  has a marginally geometric distribution with adjacent correlation. 

In this model, we adopt the TES+(a ,  4 )  method parameterized by 0 5 a 5 l and 
-1 5 4 5 l .  A brief overview of this method is as follows: For any X E B, let [X] = max{z E 
Z : z 5 X} be the integral part of X ,  and define (X) = X - [X] to be the fractional part. Let 
70 be a uniform random variable on 10, l), and a sequence {qn}n21 be of the form 

where {[n}n>l - is independent and uniformly distributed sequence on [0, a)m, and l is derived 
such that 

Moreover, to  remove the discontinuity of the sequence {qn}n21, 
transformation S<, parameterized by 0 < c < l, of the form 

Finally from St(qn) we obtain the interarrival time rn by inverting 

tve introduce a smoothing 

the geometric distribution 
function. In this simulation, we take the value a = 0.3, 4 = 0.5 and = 0.5. The estimator 
is the same as in Example l with the fixed value of Q = 0.5, and we compare the values from 
our estimator with the values from FD estimator (5 . l ) ,  where A0 is taken as 0.025, 0.01 
and 0.005 for p = 0.2, 0.5 and 0.8, respectively. From Table 27 we see that  our estimates 
show good agreement with FD estimates, with much smaller variance. 
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Table 2: Estimates for a TES- Geo/ Geo/l queue 

6. Discussion about the Convergence Rate of Estimates 
One might be interested in the asymptotic behavior of strongly consistent estimates as 
the observation length goes to infinity. Unfortunately7 the authors have not found any 
results concerning this in general case. However? in case that the system has a regenerative 
structure7 sorrie results have been so far obtained? where the convergence rate of estimates 
is often defined as the order of the square root of the mean square error with respect to 
the number of regenerative cycles. Zazanis and Suri [27] show that,  for the FD estimators 
with independent sources? one can achieve the convergence rates of 0(m-'l4) for the one- 
sided difference estimate and 0(m-'l3) for the symmetric difference estimate by choosing 
the appropriate parameter difference A0 in (5.1) as a function of m ,  where m denotes the 
number of regenerative cycles. They also show that the IPA estimate with regenerative 
form has the convergence rate of 0(m-'l2). For the FD estimators with common random 
numbers (FDC)? Glynn [l31 obtains the convergence rates of 0(m-'l3) for the one-sided 
case with the parameter difference A0 = rnp1I3 and 0 ( m - ~ 1 ~ )  for the symmetric case with 
A0 = m-1157 respectively. Also? L7Ecuyer and Perron 1191 show that? under the condition 
for IPA to apply, FDC has the same order of convergence rate as IPA, that is 0(m-'l2), 
provided that the size of the parameter difference goes to zero fast enough. 

As for our SPA estimate? if the system has the regenerative structure7 we can obtain 
the same convergence rate as that of the IPA estimate in the similar manner. Now7 slightly 
consider the general case by analogy with the regenerative case. Noting the nth summand 
of (4.1a) by Pn(0) for simplicity7 the mean square error of the estimate satisfies 

where the inequality holds since Tm 2 m from the simple discrete-time point process prop- 
erty. Since EO [!F0(0) - 7-0 d+J(O)/dO] = 0 from Theorem l, we could obtain some conver- 
gence rate (not smaller than O(m-'l2)) by imposing the assumption such as the correlation 
in {Pn(0) - rn d + ~ ( O ) / d o } ~ ~ ~  vanishes appropriately fast? in addition to the boundedness 
assumption for some moments. 
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