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Abstract Correlation of consecutive interdeparture times characterizes the output process in a queueing 
system. We present a recursive procedure for calculating the joint distribution of an arbitrary number of 
consecutive interdeparture times in M/G/1 and M/G/l /K queues. We then obtain explicitly the covariances 
of nonadjacent interdeparture times, and display the correlation coefficients that reveal the long-range 
dependence. 

1. Introduction 
In a network of queues such as those appea,ring in communication networks and manufac- 
turing systems, the customers departing from a queue constitute arrival streams for other 
queues. It is therefore important to characterize the output processes in queueing systems 
[6, chap. 61. The output process of an M/G/l queue with infinite or finite capacity can 
be formulated as a Markov renewal process for (a) the number of customers left behind 
in the queue by departing customers, and (b) the time intervals between two successive 
departures. The marginal process for (a) is a simple discrete-time, discrete-valued Markov 
chain. The marginal process for (b) , which consists of consecutive interdeparture times, 
is more complicated because of their long-memory correlation structure except for a few 
special cases. 

The past studies for the output process in an M/G/1 queue with an infinite capacity 
include the following. Burke [l] and Finch [7] showed that the output process of an M/M/l 
queue is a Poisson process at the same rate ass the arriva,l process. Jenkins [g] analyzed the 
correlation of consecutive interdeparture times for a,n M/Em/l queue, where Em denotes 
the Erlang-m distribution. For an M/G/1 queue, Conolly [2, sec. 5.5.11 (see also Takagi 
[12, sec. 1.51) gives the joint distribution for two consecutive interdeparture times rl and 7-2, 

.from which the covariance COV[T~, r2] is derived. Daley [3] derives the generating function 
for the sequence {Cov[rl , rn]; n = 2,3, . . .} , where T~ is the n - 1st interdeparture time after 
r1. Daley [4] and Reynolds [l11 present surveys of the available results. In the present 
paper, we show a procedure for calculating the joint distribution for the arbitrary number 
n consecutive interdeparture times r1,7-2,. . . , T~ from which we can obtain Cov[r1, rn]. 

For finite-capacity M/G/l  queues, which we denote by M/G/l /K where K is the ca- 
pacity including a customer in service, Daley and Shanbhag [5] and King [l01 showed that 
C o v [ ~ ~ , r , ]  = 0 for n 2 2 in M/G/1/1 and M/D/1/2 queues, and that Cov[r1,rn] = 0 for 
n > 3 in an M/G/1/2 queue. See also Takagi [13, sec. 5.21. Rather recently, Ishikawa [8] 
proved an interesting result that Cov[r1,rn] = a?3Cov[rl ,rs]  for n > 4 in an M/G/1/3 
queue, where a1 is the probability that exactly one customer arrives during a service time. 
He also derived an explicit expression for COV[T~, rn] for n < K in a,n M/M/l/K queue. His 
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analysis is based on the formulation of a Markov renewal process as mentioned above. Our 
paper provides a different approach by taking advantage of a recursive structure in the set 
of interdeparture times. 

The rest of the paper is organized as follows. I11 Section 2, we introduce notation 
and give as a preliminary a set of equations for calculating the queue size distribution at 
departure times. In Section 3, we show a procedure for calculating the joint distribution 
of n consecutive interdeparture times from that of n - 1 consecutive interdeparture times. 
In Sections 4 and 5, we present the explicit expressions for the covariances of nonadjacent 
interdeparture times in M/G/ 1 and M/G/l  /K queues, respectively. We also display some 
numerical results for the covariances, and give a few remarks. 

2. Queue Size Distribution at Departure Times 
We deal with an M/G/l  queue with a Poisson arrival process at rate A ,  independent and 
identically distributed service times, and a single server in the steady state. We also con- 
sider an M/G/l/K queue with similar settings and a finite capacity such that at most K 
customers, including one in service, can be accommodated in the system at  a time. The 
density function and its Laplace transform for the service time are denoted by b(x) and 
B*(s), respectively, so that B*(s) := fm eSxb(x)dx. The mean b and the second moment 
bP) of the service time are then given by b = -B*(')(o) and bP) = B*(~)(O), respectively, 
where (S) := di B* (s)/dsi for i = 1,2, . . .. When the service times are exponentially 
distributed, the service rate is denoted by p so thak b = 1/p. Note that our arguments 
below hold as well if the service time does not have the density function b(x); in such a 
case b(x)dx in the subsequent equations should be replaced by dB(x), where B(x) is the 
distribution function for the service time. 

In the steady state, let 71-k be the probability that k customers are left behind in the queue 
by a departing customer. If K = 1, we have TO = 1. Otherwise, the set {-KG 0 < k < K - l} 
satisfies 

and 

where ak denotes the probability that k customers arrive during a service time, and is given 

Thus we can calculate rk/7ro (1 < k 5 K - 1) by (l), and then evaluate TTQ by (2). If 
K = oo, we have T H )  = 1 - Ab which is assumed to be positive for the stability of the queue. 

3. Joint Distribution of Consecutive Interdeparture Times 
The time interval between two successive points in time a t  which customers depa,rt from 
the queue after the service is completed is called an interdeparture time. Note that we 
exclude those points in time at which customers are blocked upon arrivals in the M/G/l/K 
queue. The Laplace transform A*(s) of the density function for the length T of a single 
interdeparture time is then given by 
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from which we get the mean and the second moment of the interdeparture time as 

To E[r] = b + -  ; =A( ' )+  
2m(l  + Ab) 

A \ 

When K = oo, we have E[r] = l / A  as 110 customers are lost or created. 
We denote by A*(s, S') the Laplace transform of the joint density function for the lengths 

r and r' of two consecutive interdeparture times. By considering several conditions in the 
queue size a t  departure times, we can obtain [2, 131 

KO AsfB*(s + A ) ]  ~ i s ' B * ( s  + A )  
sB*(s) + 

+ A 
- 

S' + A 

with 7i"i = [l - B*(A)]T~/B*(A). From (6) we get the covariance of the two consecutive 
interdepart ure times as 

for K 2 2. For K = 1 (a,n M/G/1/1 loss system), we simply have 

as the departure process is a renewal process. For an M/M/1 queue, we have 

as the depa-rture process is a Poisson process at rate A. 
In order to obtain the covariance of nonadjacent interdeparture times, we ha,ve to 

consider the joint distribution for more than two consecutive interdeparture times. Let 
Az(sn, s n _ ~ ,  . . . , s l )  be the Laplace transform of the joint density function for n consecu- 
tive interdeparture times 7-1 through rn where the transform parameter S, corresponds to 
T ~ + I - ~  (1 < m). Also, let A;:k(sn, an-l, .  . . , si) and A;;>,(sn, sn_ i , .  . . , S.) be the similar 
Laplace transforms on the condition that there are k and n o r  more customers, respectively, 
in the queue a,t a depa,rture time. Thus unconditioning yields 

(10) 
We will show that {A;^(sn, sn_ l , .  . . , sl); 0 < k $ n - l} and A;;>,,(sn, - ~ ~ - 1 , .  . . , ~ i )  can 

be expressed in terms of {ALi:.i.(sn_i, sn_2,. . . , si) ;  0 < k < 72 - 2} and 
A ~ _ i : > n l ( s n - ~ ,  - sn_2, . . . , s l ) .  Therefore, starting with 

we can calculate {ALk(sn, s ~ _ ~ , .  . . , s i ) ;  0 S k < n - l} and A*.,.,(sn, - s ~ _ ~ ,  . . . , s l )  recur- 
sively with respect to n for a,n arbitrary va,lue of n in principle. Substituting them into 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Interdeparture Times in M / G / l  and M / G / l / K  145 

(10) we get A: (sn, sn-1, . . . , sl) ,  from which we can obtain the covariance of interdeparture 
times TI and Tn by 

We now present the recursive procedure. Let us first consider an M/G/1 queue. Obvi- 
ously we have 

In order to express A h ( s n ,  s n _ ~ ,  . . . , sl), 1 <: k <: n-l, in terms of {A:_l:.(sn-l, s n - 2 ,  . . . , sl); 
0 < j < n - 2} and Ai-l:.n-l (snd1, s ~ - ~ , .  . . , sl), we note that the joint Laplace transform 
of the density function for the length of a service time and the probability that j customers 
arrive in that service time is given by 

Thus we get the relation 

If there is a,n idle period before the first interdeparture time, the joint Laplace tra,nsforin of 
the density function for the length of the idle period and a service time and the probability 
that j customers arrive in that service time is given by 

Thus we get the relation 

Equations (13)) (15), and (17) provide the recursive procedure for the M/G/l  queue. 
In an M/G/l/I< queue, equations (13), (15), and (17) hold for n < K - 1. In a,ddition, 

we have 

&-l:Ii--l(~Ic-l, SI<T-2, . . . , sl) = B*(sK-~)B*(sK-~) . B*(sl). (18) 
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For n > K ,  by similar arguments we get 

and 

These equations complete the recursive procedure for the M/G/ l /K queue. 

4. Covariance of Nonadjacent Interdeparture Times in an M/G/ l  Queue 

By the recursive procedure given in Section 3, we can calculate the Laplace transform 
A;(sn, s )%-~ ,  . . , s l )  for the joint distribution of n consecutive interdeparture times r1 r2, . . ., 
rn.  Such calculation is made possible by symbolic formula manipulation software, for ex- 
ample, Mathematics [l4]. We can then obtain the covariance of r1 and rn by (12). 

In this section, we present the result for a,n M/G/ 1 queue. For the simplicity of notation, 
let us use b. := B*(~)(A) for i = 0,1 ,2 , .  . . in Sections 4 and 5. We have 

and 
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We note that (21a) is given in Conolly [2], while the results in (21b)-(21d) are new. 
According to Daley [3], the sequence {Cov[rl, rn]; n = 2,3, . . .} for the M/G/ 1 queue 

satisfies the relations 
00 1 1  S: cov[r1, rn] = - (> - ~ a r [ r l ] )  

n=2 2 A 

and 

where w(z} is the root of smallest modulus of the equation 

and wt(z) = dw(z)/dz. Thus (21a)-(21d) could have been obtained from (23) and (24). 
We display the correlation coefficients of the interdeprture times defined by 

for the Erlang-m distribution of the service time 

which has the unit mean and the squared coefficient of variation 1/m, where m is a positive 
integer. Thus the case m = 1 corresponds to an M/M/l queue, and the case m = oo to an 
M/D/1 queue. With (26)) from (22) we have 

which is independent of the arrival ra,te A. Jenkins [g] gives the expression for p(?, r3) for 
the M/Em/l queue, which agrees with our special case. 

In Fig. l(a)-(d), we plot p(r1, T ~ )  for n = 2,3,4 and 5, respectively, for an M/Em/l  
queue with b = 1 in the cases m = 2,5,10,30,100 and m against A.  We observe that: 

a G) is always nonnegative. Thus, from (27) we always have 

a Given n and m finite, p(rl, rn) is a unimodal function of A. 
a Given A ,  p(r1, rn) increases with m, and decreases with n. 
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Fig. l .  Correlation coefficients of interdeparture times in an M/Em / 1 queue 
(m = 2,5,10,30,100 and oo from below). 

5 .  Covariance of Nonadjacent Interdeparture Times in an M/G/ l / K  Queue 
Let us also present the covariances of the interdeparture times for M/G/ l /K  queues, and 
display the numerical values of the correlation coefficients for the M/Em/ l /K  queues such 
that  the service time distribution is given by (26). 

For an M/G/ l /2  queue, we have 

In pa,rticular, for an M/D/1/2 queue we ha,ve by = e  Ab and b1 = - b e A b  so that Cov[rl, r2] = 

0 as noted previously [5, 101. Fig. 2 shows tha,t the correlation is negative for the M/Em/ l /2  
queue. 

Fig. 2. Correlation coefficients p(rl, 7-2) of interdeparture times in an M/Em/ l  /2 queue 
( m  = 1,2,5,10,30 and 100 from below at  A = l). 

For a3n M/G/1/3 queue, our result agrees with Ishikawa [8] as 
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and 
COV[T~, T,] = ~ ~ - Ã ˆ C O V [ T ~  r3] n > 4, 

where al = -Abl is the probability that exactly one customer arrives during a service time. 
In Fig. 3(a)-(d), we plot p(rl, T,,) for n = 2,3,4 and 5, respectively, for an M/Em/1/3 queue 
with b = 1 in the cases m = 1,2,5,10,30,100 and m. Here the correlation coefficient can 
be both positive and negative but vanishes at A = 0 and as A -+ m. 

Fig. 3. Correlation coefficients of interdeparture times in an M/Em / 1 /3 queue 
(m = 1,2,5,10,30,100 and oo from below at A = 1). 

Finally, for an M/G/1/4 queue, we have 

where 
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independent of n. We have algebraica>lly confirmed that  our results in (31) with (32a)-(32c) 
reduce to  (33). However, Ishikawa's results for C o v [ ~ ~ ,  3-31 and Cov[ri, 7-41 do not reduce 
to (33); thus they seem to  be incorrect. In fact, our results in (31) with (32b)-(32d) are 
different from the corresponding results by Ishikawa. 

In Fig. 4(a)-(d), we plot p(r1,rn) similarly. By comparing with Fig. 3(a)-(d), we see 
that  the correlation coefficient generally increases wit h the capacity K. 

C )  ~ ( ~ 1 7  ~ 4 )  (4 /)(Tl, ~ 5 )  

Fig. 4. C~rrela~tion coefficients of i~iterdepa~rture times in an M/Em/ 1 /4 queue 
(m = 1,2,5,10,30,100 a,nd oo from below a t  A == 1). 
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