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Abstract This paper is concerned with geometric decay properties of the joint queue length distribution 
A n 1  , n 2 )  in two-stage tandem queueing system P H / P H / q  -+ - /PH/c2 .  We prove that,  under some 
conditions, p h n 2 )  C(n2)r]n1 as nl  -+ ca and p (n l , n2 )  C ( n i ) F 2  as n2 -+ ca. We also obtain the 
asymptotic form of state probabilities when nl is large or when n2 is large. These results prove a part of 
the conjecture of a previous paper [l]. The proof is a, direct application of a theorem in [7] which proves 
geometric decay property of the stationary distribution in a quasi-birth-and-death process with a countable 
number of phases in each level. 

Introduction 
Tandem queueing systems are basic models in the theory of queues and have been studied for 
a long time. However, because of complexities of their stochastic structure, their properties 
are scarcely known except for cases with product form solutions. They are simplest models 
of queueing networks as well as direct extensions of single queueing systems. Hence the study 
of them are expected t o  connect the theory of single queueing systems with that  of queueing 
networks. In this paper, we prove geometric decay of the stationary state probability in a 
two-stage multi-server tandem queueing system P H / P H / c l  -+ /PH/c2 with a buffer of 
infinite capacity and with heterogeneous servers. 

In the ordinary one-stage queue P H / P H / c  with traffic intensity p < 1, it is known 
that  the stationary distribution has a geometric tail [6] .  Let ~ ( n ;  zo ,  z1) be the stationary 
probability that  there exist n customers in the system while the phases of the arrival and 
service processes are iy and z\ respectively, then 

where (7, Co(zo), Cl(zi) and T ]  are some constants and indicates that  the ratio of both sides 
tends to  1. These constants other than G can be easily obtained from the phase type rep- 
resentations of the interarrival and service time distributions. This kind of geometric decay 
property is very useful, for example, on the computation of the stationary state probabili- 
ties, or on the discussion of tail probabilities for estimating very small loss probabilities (e.g. 
less than 1 0 ' )  of the corresponding finite queue. The above result was further extended 
for the G I / P H / c  queue with heterogeneous service distributions [5]. 

Our main concern here is t o  prove a similar geometric tail property in the two-stage 
tandem queueing system P H / P H / c l  -+ /PH/c2 with heterogeneous servers. 

In a previous paper [I], the authors have made a conjecture on the geometric decay 
of the stationary state probability in a single-server two-stage tandem queueing system 
PH/PH/1 -+ /PH/1 through an extensive numerical experiment. Let n(n1, n2; IQ, 21, 12) be 
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the stationary probability that there exist n l  customers in the fist stage and n2 customers in 
the second stage while the phases of the arrival process and the two service processes are iy, il 
and i2, respectively. Then the conjecture asserts that the stationary state probability decays 
geometrically as nl and/or n2 become large but decay rates and multiplicative constants 
may be different according to the ratio of nl and n2: 

for large n-\_ and/or n2 such that n2 < a nl ,  
7r(n1,n2;^0^1^2) -- 

G c 0  ( io )  Ci (h) Ci (G) ~FT;', 
I for large n l  and/or n2 such that n l  < a 1  n2, 

where a = - h(ql/nl) /  1 n ( q 2 / ~ )  and constants qk, Tk ( k  = 1,2) and C k ( i k ) ,  w k )  (k = 
0,1,2)  are determined from the phase-type representations of the interarrival and service 
time distributions. 

In this paper, under a certain condition, we prove the geometric decay property (1.2) for 
the multi-server case PH/PH/c l  -+ /PH/c2 in two special cases, the case where n l  -+ oo 
with n2 being fixed and the case where n2 -+ oo with n l  being fixed. The proof uses a result 
on the Matrix-geometric form solution of a quasi-birth-and-death (QBD) process with a 
countable number of phases in each level [7]. 

The remainder of the paper is constructed as follows. In Section 2, we describe our 
two-stage tandem queueing model and state our main theorems in Section 3. The result of 
[7] is briefly summarized in Section 4, and we prove the main theorems for a single-server 
case PH/PH/l -+ /PHI1 in Sections 5 and 6. In Section 7 we give an outline of the proof 
for the multi-server case PH/PH/c l  -+ /PH/c2. In many places of the proofs, we use 
properties of solutions of four key systems of equations given in Section 3. These properties 
are proved in Appendix. 

2. Model Description 
We denote by PH(a, <&) a phase-type distribution represented by a continuous-time, finite- 
state, absorbing Markov chain with initial probability vector ii = ( a ,  0) and transition rate - - - 
matrix <& = 1 f 1 (see [4]). The phase-type distribution is said to be irreducible if 

"ya + @ is irreducible, or equivalently - a < &  > 0. 
We consider a two-stage tandem queueing system (Figure 1). Customers arrive a t  the 

first stage to be served there, move to  the second to  be served there again, and then go out 
of the system. The k-th stage (k = 1,2)  has ck servers and a buffer of infinite capacity, 
so that neither loss nor blocking occurs. Interarrival times of customers are independent 
and identically distributed (i.i.d.) random variables subjecting to  an irreducible phase-type 
distribution PH(a, T). Service times a t  the j- th server of the k-th stage ( j  = 1,2 ,  . . . , ck) 
are also i.i.d. variables subjecting to  an irreducible phase-type distribution PH(ftkj, Skj) .  
These interarrival and service times are assumed to be mutually independent. Customers 
are served under the first-come-first-served (FCFS) discipline and those who find multiple 
servers being idle choose an idle server randomly according to state-dependent probabilities. 

The state of the system is represented by a vector (nl ,  "2; io; ill, - . . , ilcl; i21, - . - , i2Ca); 
where nk is the number of customers in the k-th stage, in is the phase of the arrival 
process, and kj is the phase of the service process a t  the j-th server of the k-th stage 
( j  = 1,2,  . . . , ck; k = 1,2). The index iy is interpreted to be equal t o  zero if the correspond- 
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Buffers with infinite capacity 
\ 

c, servers / c,, servers 

Service time distribution Service time distribution 
with PH (plj, Sij) with PH (h, S;,) 

Figure 1: Two-stage tandem queueing system 

ing server is idle. Then the system behaves as  a continuous-time Markov chain, which we de- 
note by { X ( t ) } .  For brevity of notation, we sometimes abbreviate the vector representation 

. . 
n l ,  n2; $0; 211 ,  . . . , zlci; z21, . . . , Gcz) as (nl,  n2; z O ,  z l ,  z2), where z1 should be interpreted as  a 
vector (z l l ,  . . . , zlcl) and as a vector (izl, . . , i2c2). 

We denote the traffic intensity a t  the k-th stage by pk = A/ where I/A is 
the mean interarrival time and l/pikj is the mean service time a t  the j-th server of the k-th 
stage, and assume pi, p2 < 1 so that  the chain is stable and has stationary state probabilities 

. . 
~ ( ~ 1 , n 2 ; ~ 0 ; ~ 1 1 ~ - . . ~ ~ 1 ~ ~ ; ~ ~ 1 , . . - , & ~ ~  

3. Main Theorems 
The (marginal) queue-length distribution of the first stage clearly has a geometric tail as 
proved in [6], since the behavior of the first stage is not affected by that  of the second stage. 
Our concern is the tail property of the joint queue-length distribution of the first and the 
second stages or the asymptotic behavior of the stationary state probabilities. 

We prepare some notations. Hereafter, k represents the stage number and takes a value 
1 or 2, and j represents the server number and runs from 1 t o  c^. We denote by I the 
identity matrix and e the column vector of all entries equal to 1. The order of them ma,y 
be finite or infinite and is understood so that expressions are well defined. If we need to  
emphasize the order of them, we attach a suffix "0" or a double suffix LLkj'7.  For example, 
TO is the identity matrix of the same order as T and e k j  is the column vector of the same 
order as Skj with all entries equal to 1. 

We set 
T~ = -Teo and ykj = -Skj ekj. 

Then the Laplace-Stieltjes Transforms of the interarrival and service time distributions are 
given by 

Now we shall state our main results. We start from the case with n l  -+ oo. 
Consider the system of equations for h, SO,  311, . . . , slci 
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As will be proved in Lemma 8.1 in Appendix, the system of equations (3.2) has two 
solutions, one of which is (h, so, ~ 1 1 , .  . . , sic,) = (1,0,0, .  . . ,0).  We will denote the other 
solution as (h, so, s n , .  . . , slcl) = (vl, 00,011,. . . , olc1). Then from the stability condition 
p1 < 1, we will see in the same lemma that 0 < 771 < 1, 00 > 0 and 01, < 0. 

Using 771 above we consider another system of equations for h, so, sl1, . . . , slc1, szl , .  . . , szc2 

The system of equations (3.3) has again two solutions as proved in Lemma 8.2. One of 
them is (h, so, ~ 1 1 , .  . . , s l c ,  ~ 2 1 , .  . . , Szc2) = (l, 0 0 , 0 1 1 , .  . . , olc1, 0,.  . . , O ) ,  and we will denote 
the other as (h, 50, ~ 1 1 ,  - - - Sicl 7 321, . . , s2c2)  = (772; WO, ̂ l 1 7  - - ^lc17 ^217 - - - 7 ^2c2)- Clearly 
wo = 00. Associated with this solution, we introduce row vectors 

Using 771, 772 and vectors above, the first theorem is stated as follows. 

Theorem 3.1. If 77; < 1, for fixed n ,  io, i1 = (ill, . . . , ilcl) and = (h;, . . . , h), the 
stationary state probability decays geometrically with rate 771 as n l  --+ m: 

The multiplicative constant G1(n2; io, ii, i2) decays geometrically with rate 772 as n2 --+ 00: 

where Co(i) is the i-th element of WO, Ckj (2) is the z-th element of W k j ,  and G2 is a constant 
independent of n2, io, G and i2. 

Next we shall state our result for the case where n2 --+ m. We will use symbols with 
bars for quantities related to this case. 

As will be proved in Lemma 8.3 in Appendix, the system of equations for h, s o ,  s a l ,  . . . , s Z c 2  

has two solutions, one of which is (h, so, sz l , .  . . , szc2) = (1 ,0 ,0 , .  . . ,0) .  We will denote the 
other solution as (h, so, 521, . . . , s2c2)  = (q2, zo, 0-21, . . . , a2c2). For the solution, from the 
same lemma, we see that 0 < TJ^ < 1, 0-0 > 0 and â j < 0. 

For q2 above, from Lemma 8.4, the system of equations for h, so, s11, . . . , sic,, ~ 2 1 ,  . . . , s2c2 
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has also two solutions, one of which is (h, s o ,  ~ 1 1 , .  . . , slcl, s 2 ~ ,  . . . , sZc2) = ( 1 , ~ ~ ~  0 , .  . . , 0 ,  
- - 
0 ,  . . . , osc2). The other solution is denoted as (h, SO, s l l ,  . . . , sic,, s21 ,  . . . , sac,) = (v1, Vo,  
- - - 
wll, . . . , wlc1, ~ 2 1 ,  . . . , wzc2). Clearly a'2, = Associated with this solution, we introduce 
row vectors 

- 
W O  = a (qIO - T ) '  and my = (oikjIkj - Skj)-l .  (3.9) 

Using 771, 772, ql and vectors above, the second theorem is stated as follows. 

Theorem 3.2. If ql < q2 and nl < v,, for fixed nl, io, il = ( i l l , .  . . , i lcl) and 22 = 

( z ~ ~ ,  . . . , i2c2), the stationary state probability decays geometrically with rate 77, as n-s, -+ oo: 
- 

r ( n 1 , ~ 2 ; ? 0 ,  ~ 1 ~ ~ 2 )  G2(n1; ZQ\ ~ 1 ~ ~ 2 )  s 2 .  (3.10) 

The multiplicative constant G ( n l ;  io, il , i2) decays geometrically with rate Tl as nl -+ m: 
- 
G2(n1; Ãˆo,i1,22 G co(io) m4 c2(22) if;1 (3.11) 

with 
- - - 
Cl (21) = Cii (211) Clc1 (iic,) and C2(k) = c 2 1  (i21) C2c2 ( 2 2 ~ ~ ) ~  

where G ( i )  is the i-th element of WO, Cki(i) is the i-th element of TVkj, and G\ is a constant 
independent of n l ,  in, i\ and 22. 

Remark 1. The decay rates m. and Q have the following properties. These properties are 
easily proved from lemmas in Appendix. 

The decay rate 771 is a monotone increasing function of pi, and v1 4 0 as pi 4 0 while 
771 f 1 as p1 1. The other decay rate 772 is less than 1 if p2 is small but it may exceed 
1 if p2 becomes large. 772 can be regarded as a function of both pl and p2. For fixed 
pi,  it is a monotone increasing function of p2 and q2 $. 0 as p2 ̂ , 0. 
A numerical experiment shows that  772 < 1 in most of two-stage tandem queueing 
systems, and hence Theorem 3.1 holds in a wide range. 
The decay rate 77, is a monotone increasing function of p2, and Q ,̂ 0 as p2 $. 0 while 
- f 1 as p2 f 1. The other decay rate v1 is a function of p1 and p2, and for fixed py, it 
is a monotone increasing function of pi. As pl .j, 0, TJl $. 0, and as pl f 1, -?- q2. This 
means that  q1 may exceed 1. 
For the condition 71 < q2 to  hold, p2 must be greater than some positive value. Hence 
Theorem 3.2 holds only in some limited cases. 

Remark 2. The authors have never succeeded t o  give an intuitive interpretation for the 
condition 772 < 1 of Theorem 3.1 and the condition q1 < v2 and q1 < 772 of Theorem 3.2. 
Related discussions are given for single-server tandem queues M A P / P H / l  --+ /PH/1 in [3] 
and G I / M / l  -+ /M/l in [Z]. 

Remark 3. It is well known that  the marginal queue-length distribution of the first stage 

has geometric tail with decay rate 771. It also can be shown that ,  if the conditions in 
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Theorem 3.2 hold, the marginal queue-length distribution of the second stage 

has geometric tail, too, but with decay rate v2. Its proof requires some extra pages, and it 
will be presented elsewhere. 

Remark 4. The constant Gl(n2; h, &) in Theorem 3.1 is given by the corresponding 
element of p in Lemma 5.2 up to a multiplicative constant. Using the geometric decay 
property of pl(nl) in Remark 3, we can see that p up to a multiplicative constant gives the 
conditional state probabilities when nl is sufficiently large. From the proof of the lemma, 
p is directly derived from stationary distribution pn of a certain QBD process with a finite 
number of phases. Since pn is of the matrix-geometric form, we can easily obtain the value 
of Gl (n2; io^ i\̂  i2) by numerical computation. 

The constant G2(n1; G, i l ,  i2) in Theorem 3.2 corresponds to  the element of p given in 
Lemma 6.2. I t  is also easy to get numerical value of p from the steady-state distribution of 
a QBD process. When n2 is sufficiently large, using the geometric decay property of p2(n2) 
in Remark 3, the conditional state probabilities is given by p up to multiplicative constant. 

4. Geometric Decay Property in a Quasi-Birth-and-Death Process with a Count- 
able Number of Phases 

To prove the theorems, we use the corollaries in [7]. These corollaries are summarized as 
Proposition 1 below. 

Consider a continuous time positive recurrent Markov chain {X(t)} on the state space 
S = { ( m , ~ ) ;  m , i  = 0 ,1 ,2 , .  . .}. The state space S is partitioned into subsets ,Cm = 

{(m, i } ;  i = 0,1 ,2 , .  . .}, m = 0,1,2, . . ., called levels. When partitioned by levels, the tran- 
sition rate matrix Q of {X(t)} is assumed to  have a block-tridiagonal form: 

Such a chain is called a quasi-birth-and-death (QBD) process with a countable number of 
phases in each level. The stationary vector TT of the QBD process is also partitioned as 
(xO, TT!, - ) according to  G ' s .  

Proposition 1. We assume that diagonal elements of -B and -Bo are bounded by 
d(< W) from above and that there exist a positive constant 77 < 1 and positive vectors p 
and q satisfying 

p (^-'A + B + = 0, (4.2) 

n l p A q #  n p c q ,  

pe  < m ,  and p q < m .  
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If TT' q < oo and if the matrix Q' formed from Q by deleting rows and columns corresponding 
t o  states in C,o is irreducible, then TT has a geometric tail: 

For the proofs of Theorems 3.1 and 3.2 in the preceding section, we apply this proposition 
for partitions by the number of customers in the first or the second stage. 

We also prepare some properties related t o  phase-type distributions. We will denote by 
and @ the Kronecker product and the Kronecker sum operations. 

Let P H ( a ,  a )  be an irreducible phase-type distribution and put 7 = -@e .  Then the 
LST of the distribution and its derivative are given by 

'S '*(s)=a(sI-@)' l7 and < ^ * ' ( s ) = - a ( ~ I - @ ) - ~ ~ .  (4-7) 

Especially, the mean of the distribution is given by -@*'(0) = a(-@)-2-)' = a ( - @ ) ' e .  
Note that @*(S) can be considered as a function of S on the interval (4, oo) where < 0 is 
the abscissa of convergence. 

Lemma 4.1. For h > 0 and s > 4, the equation 

has a positive solution X if and only if ^?*(S) = h. If <^*(S) = h, then X = a (S I - @ ) l  is 
a unique positive solution of (4.8) up to  a multiplicative constant. 

Proof. From (4.8) we have X ( s l  - @) = ( h 1 x 7 )  a and hence 

Postmultiplying 7, we have x-y = hlx-y?**(s) .  This implies tha t ,  if the equation (4.8) 
has a positive solution, then <^*(S) = h. Conversely, if @*(S) = h,  by substituting X with 
a (S I - @ ) l  the left hand side of (4.8) is rewritten as 

Hence X = a (S I - @ ) l  is a solution of (4.8). The positivity of a (S I - a ) '  is clear from 
the irreducibility of the distribution. The equation (4.9) indicates that a (S I - @ ) l  is a 
unique solution up to  a multiplicative constant. 1 

Lemma 4.2. For irreducible phase-type distributions PH(afli} with 7, = -Re, z = 

1 , 2 , .  . . , c, and for positive numbers hi,  h2 , .  . . , h o  the vector equation 

has a positive solution X if and only if there exit real numbers S', 5 2 , .  . - , sc such that  
@,*(S,) = hi, i = 1 , 2 , .  . . , c ,  and sl+s2+---+sc = 0. The solution is given by X = x l @ - - - @ q  
with X, = a, (S, I, - @ , ) l ,  i = 1,2,  . . . , c, up to  a multiplicative constant. 
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Proof. First we prove "if" part. From Lemma 4.1 we have 

Thus X is a solution of (4.10). For the proof of "only i f  part, we write f = ( h p  71 a1 + +l) 

@ @ ( h 1  7 ac + $c). From the irreducibility of PH (ai, +i), the matrix f is irreducible 
and its Perron-Frobenius eigenvalue is simple. The equation (4.10) implies the Perron- 
Frobenius eigenvalue is equal to zero. 

Since f is a Kronecker sum of c smaller matrices, its simple Perron-Frobenius eigenvalue 
is a sum of Perron-Frobenius eigenvalues of the smaller matrices. From Lemma 4.1 such 
eigenvalues have to  satisfy (S,) = hi and sl + 3 2  + - - + sc = 0. Â 

5. Proof of Theorem 3.1 for Single Server Case 
First we prove Theorem 3.1 for the single server system PH/PH/l -+ / P H / l .  In this case, 
cl = c2 = 1 and the state of the Markov chain { X ( t ) }  is written as (nl ,  722; io, il, i2) in which 
il and i2 are no longer vectors but integers. Double suffices in symbols such as Skj  and w k j  

are also replaced with a single suffix as Sk and wk. 

We arrange the states (nl,  n2; 12) in lexicographic order and partition the state 
space according to 7x1, i.e., we let 

Lm={(n l , n2 ; io , i l , i 2 )~n l=m} ,  m = O , 1 , 2  ,.... (5-1) 

We denote by Q the transition rate matrix of the chain corresponding to the arrangement 
above and by TT = (x0, T T ~ ,  . . - )  the stationary vector partitioned according to G ' s .  Then 
Q is of the block-tridiagonal form as (4.1) with 

7 0 "  @ Jl 

7 0 0 : @ J l @  1 2  

A =  7 o a  @ I1 @ 1 2  

B 

and 

c 
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Then { X ( t ) }  is regarded as a QBD process with a countable number of phases in each level. 

Now we shall apply Proposition 1 and prove Theorem 3.1 by taking V = v1 and suitably 
defining vectors p and q. First we introduce several matrices and vectors including q ,  and 
then we check in Lemmas 5.1 5.3 that  the condition (4.2) (4.5) of the proposition hold. 
The geometric decay of the limiting vector p will be proved in Lemma 5.4. 

Let 

Then from (5.2), (5.3) and (5.4) 

We define row vectors and column vectors as 

U,, = a(ooIo - T)- l ,  U1 = /31(0111 - S1)-l, U 2  = /32(-S2)-l, 

v, = (ooIo - T)-'-y0 and v1 = (01Jl - Sl) - l7 ,  . 
(5.6) 

Since wo = oo, the vector u0 is the same as W O  defined earlier. But for symmetry of 
expressions, we introduce another symbol here. Note tha t ,  from Lemma 4.1, uo is a solution 
of the equation uo('n~170a + T) = oouo. Other vectors are solutions of similar equations, 
too. These equations will be frequently used in the proofs of subsequent lemmas. 

From (4.7) and the fact that (vl, 0 0 ,  o l)  is a solution of the equation (3.2), these vectors 
are related with LST of interarrival and service time distributions as follows. 

Since A + B +C = (ipc170a + T) CD (i)171/31 + s l )  CD (72/32 + s 2 ) ,  it follows from Lemma 4.2 
that  

Let us define a column vector 

Lemma 5.1. The vector q is positive and satisfies K q  = 0. 
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Proof. The positivity of q is clear from the definition. The vector Kq is written as 

-&(vo 8 v1 R e;) + Bo(vo 8 v l )  

( A  + B)(vo 8 v1 e z )  + C1(vo R V ' )  

(A+ B + G ) ( V O  @ v 1  8 e;) 

( A  + B + C){vo R v1 8 ez) 

From (5.8)  the subvectors of Kq corresponding to  ,Cm, (m 2 2), are equal to zero vectors. 
For the first two subvectors we can also check that they are equal to  zero vectors. I 

To prove the next lemma, we need another notation. For an arbitrary column vector 4 
we let d i a g ( 4 )  be the diagonal matrix having elements of 4 in its diagonals. The operator 
d i a g ( - )  satisfies the following relations for column vectors 4 and i f s :  

Lemma 5.2. If 77; < 1, there exists a positive vector p such that  

pK = 0 ,  pe < oo, and pq < oo. 

Proof. To use a property of an ergodic Markov chain, we transform K so that it becomes 
a transition rate matrix. Let D = d i a g ( q )  and 

where Do = d i a g ( v o  8 v l )  and D = d i a g ( v o  8 vl 8 e^j. Since KDe = D ^ K ~  = 0, K D  
is a transition rate matrix of a QBD process with a finite number of phases in each level. 
Theorem 3.1.1 in [4] says that K D  is ergodic if and only if 

where TT is a positive row vector such that 

From (5.8)  we know that  TT is written as (uo 0 u1 @I Â¥us  D up to  a multiplicative constant. 
We shall evaluate the both sides of (5.10) using Lemma 4.1: 
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Therefore, the difference of the both sides of the inequality (5.10) is given by 

If 7 7 ~  < 1, the quantity in the braces is positive from Lemma 8.5 in Appendix, and hence 
the inequality (5.10) holds. This proves that  K D  is ergodic under the assumption of Theo- 
rem 3.1. 

Since K D  is ergodic, there exists a positive vector pn such that p D K D  = 0 and pDe = 1. 
Then, 

p  = P D ~ - l  (5.12) 

is the desired positive vector. In fact, 

and 
p e  < d 1 p q <  dl < 00, 

where dl is a positive number such that e  < dl q .  

Lemma 5.3. For p  given in (5.12) we have 77,1pA > p  C q .  

Proof. Let 

then 

Note that a postmultiplication of E implies an aggregation of states into aggregated states 
with common states of the arrival process and the service process at  the first stage while 
the state of the second stage is ignored. Postmultiplying E to the equality p  K = 0 and 
applying (5.13), we have 

From Lemma 4.2, p E  is a constant multiple of uo ul.  If we let the multiplicative constant 
be H, we have 
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The quantity in the braces of the right most hand side is positive from Lemma 8.6 in 
Appendix, and the inequality of the lemma holds. I 

Lemmas 5 . 1 ~ 5 . 3  above show that the constant q1 and positive vectors p and q satisfy 
the conditions (4 .2)~(4.5)  in Proposition 1. The remaining is to show that 71-19 < oo and 
that the matrix Q' is irreducible. The former is trivial from the fact that there exists a 
positive number d2 such that q < d2e. The latter is easily checked using the irreducibility 
of the interarrival and service time distributions. Thus we have proved (3.5) of Theorem 3.1. 

To prove the tail property of p, we introduce a subpartition of each C,rm m > 1, 

and we divide the vector p as (p(O), p ( l ) ,  . . . )  according to this subpartition. 

Lemma 5.4. The vector p given in (5.12) has a geometric tail: 

where G' is a constant and WO, W! (= wl1) and w2 (= wzl) are vectors defined in (3.4). 

Proof. By the QBD structure of the transition rate matrix KD, we can apply the matrix 
analytic theory by Neuts [4]. Let h be the rate matrix of KD. Then it is the minimal 
non-negative solution to the matrix equation 

Since p = pD D ' ,  we know that 

- nt - -1 
p(n2) = ~ ( l )  D R~ D as n2 Ã‘ oo, 

where G" is a constant, f i  is the Perron-Frobenius eigenvalue of and in is a corresponding 
left eigenvector: X D  RD = f i  b. Then by premultiplying XD to the equality (5.15), we have 

Since fj < 1, from Lemma 4.2 and Lemma 8.1, & D  is a constant multiple of wo  @w1 SW,: 

This proves the lemma. 

%D-  = G'" w o  0 w l  Si w2.  

I 

Lemma 5.4 proves (3.6) of Theorem 3.1, and this completes the proof of the theorem. 
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6 .  Proof of Theorem 3.2 for Single Server Case 
Next we prove Theorem 3.2 for the single server system P H / P H / l  -+ /PH/1. In this 
section we use the same convention for the double suffices as in the last section. 

We rearrange the states (nl, n2; io, i l ,  i2) of {X(t)} first in the order of n2 and then in 
the lexicographic order. We define a new partition of the state space by 

- 
~ ~ = { ( n ~ , n ~ ; i ~ , i ~ , i ' ~ ) ~ n ~ = r n } ,  r n = 0 , 1 , 2  , . - . .  ( 6 - 1 )  

We denote by Q the transition rate matrix of the chain corresponding to the arrangement 
above. Then, if we partition according to G'S, Q is of a block-tridiagonal form 

where 

and 

We denote by TV = ( TO, TVl, - - ) the stationary vector of {X(t) } partitioned according to - 
Lm7s. 

We shall show that the conditions of Proposition 1  hold if we take = % and if we 
define vectors p and ?j suitably. Similar to the preceding section, we first introduce several 
matrices and vectors including q, and then we check in Lemmas 6.1 6.3 that the condition 
(4.2) - (4.5) of the proposition hold. The geometric decay of the limiting vector p will be 
proved in Lemma 6.5. 
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Let 

Then from (6.3), (6.4) and (6.5) 
n A 

A0 = yoa@/3l 0 1 2 7  A =I 0 1 1  0 1 2 ,  

A 

BO = T M 2  + ~ Z I O  @ 7 2 / 3 2 ,  B = T @ S l ~ S z + i ? ~ J o @ I i @ 7 2 1 8 2 1  
A n 

Cl = q 2 I o  g T~ I2  and C = i iYIJo @ 7 1 / 3 1  @ 1 2 -  

We define row vectors and column vectors as 
- - 
uo = a ( f i I o  - T)-l, m = ,Bl (-Si)-l, ~2 = ̂ ( % I 2  - S2)-', 

- 
v. = (voIo - T ) ' ~ ~  and 5 2  = (F212 - S-s) ' - f , .  

Since = v2, the vector u2 coincides with W2 defined in (3.9). These vectors are solutions 
of equations of a type given in Lemma 4.1. They are related with LST of interarrival and 
service time distributions as follows: 

- 
U,-,To = avo = T*(To) = q2, B1f l  = ,B1w1 = S ^ i )  = qal, 
--  - U ~ V ~ = - T * ' ( ~ ' ~ ) ,  u ~ < ' ~ = - s ~ ' ( ~ ' ~ )  and t t 2 e = - s i t ( 0 ) .  

(6.9) 

We define 

- 
Q =  

Lemma 6.1. The vector o is positive and satisfies Kg = 0 .  

The proof is straightforward from Lemma 4.2. 

Lemma 6.2. If ql < q2, then there exists a positive vector p such that 

p z = 0 ,  pe<oo and m < o o .  

1-- 
Proof. As in Lemma 5.2 we consider the transformation K-g = D- K D of K by D = 
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A 

where DO = diag(vn 8 6) and D = d i a g ( 6  8 el 8 &). G is a transition rate matrix of 
a QBD process with finitely many phases in each level. The ergodicity of is proved as 
follows. 

From Lemma 4.2, the vector 'K = (ao @ 8 u2) 5 satisfies the equation 

A direct calculation shows that 
--l-- 

= S*) {T* (F,,) S?' (0) - T*' (o'o) S: (Q)} 

If v1 < q2, the quantity in the braces of the right most hand side of the above equation 
is positive from Lemma 8.7 in Appendix, and hence from Theorem 3.1 .l in [4] the Markov 
chain G is ergodic under the assumption of Theorem 3.2. 

Thus there exists a positive vector 6 such that p f l E  = Q and %e = 1. Then, 
-- 1 p = pDD (6.11) 

is the desired positive vector. In fact 

- - - -1 
p K = p - r , K r j D  = O ,  p g = p ~ , e = l < m  and p e < d l p g < d l  <oo, 

where is a positive number such that e < dig. Â 

Lemma 6.3. For p given in (6.11) we have > n2 pm. 
Proof. We note that,  from (6.6) and (6.7), K is written in the form of a Kronecker sum 

K = E<Â ( S 2  + 5)272/32 - M).  (6.12) 

with some matrix E. In order to derive a detailed structure of p, we shall decompose related 
matrices and vectors in a similar manner to  (6.12). K-r, is decomposed as 

where 

and 
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The matrix L in (6.12) is given as in (6.14) by removing hats. Zj and D are decomposed 
as q= qr 8 v2 and D = R 0 diag(&), where 

and DT = d i a g ( e ) .  

It is easily checked that ?jr > 0 and G-, = 0,  or equivalently LDe = 0. Hence G is a 
transition rate matrix of a QBD process with a finite number of phases in each level. The 
ergodicity of is clear from that of S, and there exists a stationary probability vector 
p-rrj of the chain: - 

pLDLD==O and p-LDe=l. 

Using this b, we c a n  decompose p and as follows: 

Now we evaluate the both sides of the inequality of the lemma. Since C q  = 7/y1 qz@h 
we have - -_l - - 

% p C q  = ( a 2 f 2 ) '  pm- <lT Ãˆ2T = R ( u ~ v ~ ) ~ ,  (6.15) 

where we use the relation qz = w e  = l .  On the other hand, since 

we have 

Note that eo (â‚ y1 = ( I o  @ 7 /3 )(co (â‚ el) .  This means that the i th  element of eo 0 71 is 
1 1- 

the rate that the Markov chain LE at  state (n,  i )  goes down to level (n  - 1).  Hence the 
quantity (6.16) is the rate that the chain LE goes one level down in the steady state. From 
the balance equation, this rate is equal to the rate that the chain goes one level up: 

By postmultiplying EE t o  the equation 0 = bG, we have 
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This indicates that EZ can be regarded as the stationary probability vector of a Markov 
chain with transition rate matrix T + T2J2 + q21q00^ and is given by 

- p m  -E, = ( T Z ~ ' ~ ' ~ ) '  a. d iag(6) .  

Thus, from (6.17), we have 

--l -- q2 p A q = ( U ~ V ~ ) - ~  U. diag(v0) f o  = ( $ Q )  S ri,. 

Therefore, from (6.15) and (6.18) we have 

From Lemma 8.8 the right hand side is positive, and this proves the lemma. I 

Lemma 6.4. If q1 <q2,  t h e n w  < m .  

Proof. Since 71-1 < we have 

The behavior of the first stage of our tandem queueing system is not affected by the second 
one, and the stationary marginal probability vector ~ ~ z o ~  of the first stage decays ge- 
ometrically with rate ql as nl Ã‘? m [6]. Since q decays with rate the inner product 

Tmij is finite if q1 /v2 < 1. I 

To see the asymptotic form of p, we consider a subpartition of each L, 
- 

I n  = { ( n l ; z 0 , i l , i 2 ) ~  = n}, n = 0,1 ,2  , . . . ,  

and denote by p = (p(O), p(l), - - )  the row vector p partitioned according to in's. 

Lemma 6.5. If vl < 1, then 

where G' is a constant and m, (= wl1) and m2 (= ?21) are vectors defined in (3.9) 

Proof. In a similar manner to the proof of Lemma 5.4, we apply the matrix analytic 
theory by Neuts [4] to  the rate matrix G. Let % be the rate matrix of G satisfying 

Since p = we know that 

~ n l  ---l -- 
W cl1 f ~ ^  + D  l p(n l )  = p(1) D RE D as nl  -+ m, 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Asymptotic Properties in Tandem Queues 135 

A 

where G" is a constant, 77 is the Perron-Frobenius eigenvalue of RE and Sn is the corre- 
A 

spending left eigenvector: % RD = Q+. Then by premultiplying to  the left hand side 
of (6.20), we have 

--l 
0 = % D  (fj-l,Z+B+fjC) 

--l 
From an extended version of Lemma 4.2, in order that the positive vector % D  satisfies 
the above equation, there exit SO, sl and 5 2  such that 

These equations are the same as (3.8) in the single server case, and hence s o  = Uo, sl = U1, 
s2 = a2 and TJ = since TJ has to  be less than 1. Again from Lemma 4.2, we know that 

A- 1 -/// 
XED = G  Wo<S)iZlCg)W2, 

where G/ /  is a constant. This proves the lemma. I 

Lemma 6.5 proves (3.10) of Theorem 3.2, and this completes the proof of the theorem. 

7. Extension to Multi-server Case 
The proofs in Sections 5 and 6 for Theorems 3.1 and 3.2 can be extended straightforwardly 
to the case with heterogeneous multiple servers in each stage. In this section, we give brief 
comments on the proofs of the theorems. 

The state space of the Markov chain { X ( t ) }  is divided in a similar manner to  (5.1), but 
here il should be regarded as a vector (ill , .  . . , ilcl) and ia as a vector (ill,. . . , ilcl). In this 
case matrices A ,  B and C in (4.1) are of the form 

B o o  

B10 B11 

Â¥clcl- B C l C l  

BCl+lCl B C l C l  

BCI+lC, 
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where 

and other matrices are very complicated for writing down explicitly here since Cm for 0 < 
m < c2 consists of states corresponding to various combinations of busy and idle servers. 

The proof of Theorem 3.1 for the multi-server case is parallel to  that  for the single server 
case given in Section 5. In this section, we use some symbols without explicit definitions 
if the meaning of them are easily understood from the corresponding ones defined for the 
single server case. For the solution (vi, 0 0 ,  an, . . . , olQ) of the equation (3.2), we define 
vectors 

u0 = a(ooIo - T)-', 

and vi, = (%Ilj - S y ) 1 7 1 j  , j = l , 2  ,..., cl. 

These vectors satisfy similar relations t o  (5.7). The vector q is defined as 

where en is the column vector of the same order as the number of states in with all entries 
equal t 0-1. 
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For the existence of p, we extend Lemma 5.2 to multi-server case. That is, if we put 

then p exists iff 
+ ? { D - ( ~ ~ ' C ~ ~ J @ ~  < + ? ( D ~ B ~ ~ ~ ~  ~ ) e .  

By definitions, this inequality is equivalent to the following one: ^ 1 1 >g- 
ill ,^l sl'j (01,) ,=l S;; (0) 

If Q < 1 the inequality (7.5) holds by Lemma 8.5 in Appendix, and hence Lemma 5.2 is 
extended to mult i-server case. 

A similar argument to  the above shows that Lemma 5.3 holds for multi-server case. In 
fact, if we let 

then 

For p, we postmultiply E to the equality pK = 0 to have 

From Lemma 4.2, pE is a constant multiple of u 0  8 ull (8 - - 8 ulcl. Let H' be the 
multiplicative constant, then we have 

1 C l  1 C l  C l  

= H ~ - U ~ V ~  S n u l k v l ~  .= P - T * ~ I ~ ~ )  rn-s~tm- E {yL(olk) 
ill j=lk#j ill j=l k=l I 1. 
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Hence the inequality of Lemma 5.3 is equivalent to  

1 
til < -T* (00) 

til 

This holds from Lemma 8.6, and hence Theorem 3.1 is proved for the multi-server case. 

We can derive a proof of Theorem 3.2 for the multi-server case in a similar manner. We 
omit the proof here. 

8. Appendix 
In this section, we prove various properties of the solutions of the four key systems of 
equations (3.2), (3.3), (3.7) and (3.8) given in Section 3. 

Lemma 8.1. The system of equations (3.2) has two solutions, one of which is (1,0,0, . . . ,0) .  
For the other solution (vl, 00, oil,. . . , olci), vl < 1, 00 > 0 and olj < 0. 

Proof. From the second equation of (3.2), we have 

Since S$(sG) is a monotone decreasing function, the relation (8.1) defines slj as a function 
of 511. Then, from the third equation of (3.2), so = -sl1 - 312  - - sic, is also interpreted 
as a function of sl1. Since so is a monotone decreasing function of sll, we may take so as an 
independent variable and regard sll, 512, . . . , sic, as monotone functions of so. For brevity 
of notations, we introduce a function 

Then the system of equations (3.2) can be rewritten as 

Now we show that  the function U; (-so) is a logarithmic-convex function, that  is, log U: (-so) 
is a convex function and satisfies 

The first differentiation U:'(-S~) can be obtained as follows. Differentiating both sides of 
the second equation of (8.3) by SO, we have 

It  follows from the third equation of (8.3) that  
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Substituting (8.5), we have 

and hence 

For ?7~"(-so), differentiating both sides of (8.6) by so we have 

And hence 

Therefore, 

Since S; (slj) is a logarithmic-convex function of slj, the term between brackets is positive. 
Therefore, U: (-so) is a logarithmic-convex function of SQ. 

We denote by (r, m )  the domain of T*(so) and by (Qlj, m) the domain of S3 (slj). Then 
f (so) = T* (so)UT (-so) is defined on (r ,  - zl Olj). It is trivial that so = 0 is a solution 
of the equation f (so) = 1. This solution leads us to a solution (h, SO, ~ 1 1 ,  ~ 1 2 ,  . . . , sic,) = 
(1,0,0,0,  . . . , 0 )  of (3.2). Since f (so) is a logarithmic-convex function with limSoir f (so) = 

limsoT- elj f (so) = oo, the equation f (so) = 1 has another solution so = 00. We note that,  
if p1 < 1 then 

Since UT1(0) is negative, we have fl(0) = ~ " ( 0 )  - u;'(o) < 0. Thus we know that 0 0  > 0. 
From the monotonicity of 5';- (slj), this solution leads us to another solution of (3.2) 

where 71 < 1 and < 0. Â 

Similar argument to the proof of Lemma 8.1 can be applied to the following three lemmas. 
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Lemma 8.2. The system of equations (3.3) has two solutions, one of which is 
(1,o-o,o11, - S ,  o-lc1,0, - - ,0 ) .  

Lemma 8.3. The system of equations (3.7) has two solutions, one of which is (1,0,0,  . . . ,0).  
- For the other solution (q2, To, o"21,. . . , aic2), ii2 < l, 3 0  > 0 and as, < 0. 

Lemma 8.4. The system of equations (3.8) has two solutions, one of which is 
- (1, 0-0, 0, . . . . . . , 0, Tz1, - . . , 0-2c2). 

The following four lemmas are used in Sections 5 and 6. Since all of them can be proved 
in a similar way, here we give a proof of Lemma 8.5 only. 

Lemma 8.5. If q2 < 1, then 

Proof. Similar t o  the proof of Lemma 8.1, we introduce two functions 

and consider the equation 

Since f2(U;) is logarithmic-convex, this equation has two roots, 0 and a2. If q2 < 1, then 
02 < 0 from (8.9) and fn(0) > 0. This implies that  

and hence 

From a similar equation to (8.6), we prove (8.8). 

Lemma 8.6. 

Lemma 8.7. 

Lemma 8.8. 
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