
Journal of the Operations Research
Society of Japan

Vol. 41, No. 1, March 1998

LUMPABILITY IN LRU STACK. WITH
MARKOVIAN PAGE REFERENCES

Atsuhiro Tanaka Issei Kino
C&C Media Research Laboratories NEC

(Received April 30, 1997; Revised November 11, 1997)

Abstract The dynamic behavior of programs is studied through LRU (Least-Recently-Used) stack dis-
tribution assuming Markovian page references. We propose a new analysis method to calculate steady state
probabilities for the LRU stack. We first prove that a Markov chain which describes the behavior of an
LRU stack of full-length is lumpable to a Markov chain having a smaller transition matrix than that in the
original Markov chain. Based on this lumpability, we propose an algorithm to calculate the invariant vector
for the transition matrix of the Markov chain for a full-length LRU stack. We show numerical examples
calculated with the proposed algorithm, and evaluate computational efficiency of the proposed method.

1. Introduction

An awareness of the influence of dynamic behavior of programs on the performance of
computer and/or network systems is essential in the design and development of success-
ful systems [3, 131. The caching technique was developed based on the observation that
programs tend to reference part of the address space more frequently than other parts for
during certain periods of time. We can apply the caching technique to increase the execution
speed of computer program that accesses secondary storage. Besides its use in operating
systems, applications of the caching technique can be found in many computer and/or net-
work systems, such as distributed shared memory[10], file organizing technique[2, 51, and so
on. Smith [l11 has provided a complete bibliography on those techniques. In the caching
technique, the rules used to decide which pages should be moved and when they should be
moved are called page replacement algorithms, which have been a subject of considerable
interest in computer science for a long time. The LRU (Least-Recently-Used) algorithm is
known to be one of the most effective techniques and has been used in many systems. The
LRU is known as alternative name MTF (Move-To-Front) in the study of file-self-organizing
problems. The LRU stack distance distribution was proposed by Spirn [l21 as having the
best representation of essential characteristics of program behavior, and has been studied by
many authors, e.g. [12, 141. Most previous studies on the LRU stack algorithms assumed an
independent page reference sequence. Knuth [g] pointed out, however, that computational
experiments indicate that the MTF (LRU) algorithm works even better than predicted
results with the independent-reference assumption, because successive accesses are not in-
dependent of each other. Though Markovian-page-reference assumption is more realistic
than the independent-reference, not much work has been done in this direction.

Crucial problems in the study for the LRU stack with Markovian page references are how

© 1998 The Operations Research Society of Japan

92 A. Tanaka & I. Kino

to reduce space complexity and computation time complexity for a huge size of transition
matrix which describes the transition of an full-length LRU stack. Since size of a transition
matrix to describe an full-length LRU stack for a M-page program is M! X M!, it becomes
immediately intractable to compute the transition probabilities for the Markov chain, even
if the page size is a moderate number. For example, the size of transition matrix for an
full-length LRU stack is 3,628,800 X 3,628,800 if the program refers to 10 pages.

Chu and Knott [7] studied several general cases of Markovian page reference sequences,
and derived steady state probabilities for the LRU stack using the regular-expression method.
The regular-expression method can reduce space complexity for the size M! X Ad! matrix to
matrices up to a maximum size M X M, if the program refers M pages.

In this paper, we propose an new analysis method to calculate steady state probabilities
for the LRU stack. The proposed method, which we call the lumping method, is based on the
lumpability of the Markov chain which describes behavior of an full-length LRU stack. The
lumping method has the same space complexity as that of the regular-expression method,
and has more effective computational complexity than that of the regular-expression method
if we choose frequency of multiplications as a measure for the complexity. We first study
the lumpability of a Markov chain which describes the state transitions of an LRU stack
of full-length, and we prove that the Markov chain is lumpable to a smaller Markov chain.

ased on the lumpability, we then propose an algorithm to calculate the invariant vector
of the Markov chain for a full-length LRU stack. To reduce matrix size, we developed
three sub-techniques, the partial lump method, the block-diagonal decomposition and the
recursive reduction technique. Applying those techniques one by one , we can reduce space
complexity for the size M! X M\ matrix to matrices U to a maximum size M X M .

The model and notations are given in the next se on. The lumpability of the Markov
chain is described in Section 3. The technique and algorithm to derive the invariant vector
of an full-length LRU stack are described in Sections 4 and 5, respectively. Section 6 has
numerical examples of stack distance distributions computed with the proposed technique.
We evaluate computational complexity for the regular-expression method and the lumping
method, and discuss the efficiency in Section

2. Model description and notations
Assume that a program consists of a number of M pages labeled 1 ,2 , - - , M, and page j is
referred to with probability pii given that page 2 was most recently referred to. Thus the
access patterns are time-independent. Assume that xEl pzj = 1, for 2 = 1,2 , - - . , M. We
write

to denote the transition matrix for the Markov chain which generates the page reference
sequence.

The LRU stack with stack length m (1 < m < M) is the ordering of page numbers of
a program by recency of reference. We write s(al , 0 2 , - - , am) to describe the state of the
LRU stack with stack length m, where ai indicates the page number of the 2-th position

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Lumpability i n LRU Stack 93

in the LRU stack for i = 1,2, , m. Page a, is the i-th most recently accessed page, so
page a1 is the most recently accessed page. Each time a page is referenced, the LRU (Least-
Recently-Used) algorithm it replaces page number a1 stacked at the head of the stack with
the page number of the currently-referred-to page ai in the following way:

(a i , a l , - - , ai-i,ai+i, - - - , a m) , i E {1,2, ,m} s(a1, a27 - am) =+ s(ai ,ai , a2, - - - ,an,-1) , i $ - . . ,m} (2.2)

if the state of the stack is s(al, a2, , am) just before the page reference. We define the
LRU-operation A ! for position i for a given state vector a = (a1, a2, - - , am) of an m-length
LRU stack to be

and the LRU-operation set for an m-length LRU stack to be A^(a) = {A?'(a) 1 i =

1,2, , M}. We can describe the transition of states for a full-length M LRU stack with
transition matrix QM in which transition probabilities are defined by

^ M (s (~) , s(al)) =
Palai, if a' E ~ (~) (a) ,

otherwise

where a = (a1, a2, - . , a^) and a' = (a^ a;, , a h) and paia; is the time-independent
probability that page a; is referenced given that page a1 was just referred to. The order of
the state set SM of the Markov chain is M !. We assume that the LRU stack has a steady
state.

For simplicity, the notations used in this paper will usually not distinguish between ran-
dom variables and particular values of them. For example, the notation P(s(a l , 0 2 , - - - , am))
is used for the probability that the random variables (al, a2, - - , am) will take generic values
of (al , 0 2 , - . , am), if the context is such that confusion is unlikely to occur. We denote the
steady state probability for the LRU stack with length m by

We say that a page reference has distance i, if the state of the full -length LRU stack is
s(al , a2, - - - , aM) just before the page reference, and if the referred to page is ai. The stack
distance 6 is a random variable defined by the distance of positions between page numbers
which are referred to successively. Formally, using the full-length LRU stack distribution TT,

the stack distance distribution can be defined in the form

where Im and w[Im] denote the integer set of {l, 2, m , m} and the set of permutations on Im
respectively. The stack distance distribution P(6} may more accurately reflect the locality
of program behavior than the distribution P (s (a)) of the LRU stack. Using information on

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

94 A. Tanaka & I. Kino

the stack distance distribution P(% we can immediately calculate the page fault rate F(C)
given memory storage size of C pages in the form

Now let us introduce some notation and terminology to be used below. We write x y to de-

note (xyt Xy27 - 7 if = (xi, x2, ' . xm) and y = (~ 1 , 92, , ~ m) , e.g., (21 3, 1)(1,3,2) =
(2,1,3). Let ~ [x] be the ordered set of permutations on X, i.e. o[x] = { x y \ y E w[Im]},
where the ordering rule works in such way that x g takes precedence over xz for any y
and z in w[Im]- This works if the subscript for y is smaller than the subscript for z when
regarding subscript sequence (yl , y2 , - m , ym) as an m-digit number yl y2 - ym in an m-
ary number system. Let oi[x] be the i-th element in the ordered set ~ [x] . For example,

o[(xi1 X27 x3)] = {(El, ~ 2 7 ~ 3) , (XI , X31 ~ 2) 1 (~ 2 , ~ s) , (~ 2 , ~ 3 , x l) l (~ 3 , (~ 3 7 ~ 2 , XI)}

and Q [X] = (xi, xi, x3), Q [x} = (xi , x3, x2) , 03 [X] = (x2, xl , x3) and so on. Let p^) [X]

be the ordered set of combinations of m-elements (xi, 2-2, * - , xm) taken k-elements a t a
time, where X = (xi, X^, - , xm) and the ordering rule works in the same way as that
for ~ [x] . Let #[X] be the i-th element in the ordered set ^[X]. For example, if

x = (xi , x2, - - - , XM), we denote xflm), X'^, and X = (~ f (~) , X'('")) to describe the first

part (xi, x2, - , xm) of X , the latter part (x ~ + ~ , xm+2, - - , xM) of X, and the partition of X

into these parts, respectively. For a state vector X = (xi, x2, - - , ~ m) ~ we write IM \ {X} to
denote IM \ {xl, x2, - . , xm}. For vectors X and y, the notation x \ y describes the difference

set {XI, 3-2, * , xm} \{yl, 92, - a , yn}- We write X 9 y to denote the elimination of y out of X

without changing the order of the original sequence, e.g. (al, 0 2 , a3, a4) 0 (a2, a4) = (al , 03).
The notation u = (1,2, - . , M) is used to describe the original state vector. We use the
notation [lxll = xi + x2 + - - + xm to describe the summation of all elements in vector
X = (xi, x2, - - - , xm). Finally, we let En be an identity matrix with order n and we define

n

3. Lumpability of Markov chains
3.1. Lumpability of the original chain
Since the size of transition matrix QM for a full length LRU stack is M ! X M !, exact and
straightforward numerical computation may be intract able when more than a few (e.g., say
ten) pages are involved. To reduce the computations so as to only involve matrices with a
maximum size of M X M , we first studied the lumpability of the Markov chain for a full
length LRU stack. We will use descriptions used in group theory [l], henceforth, to describe
states of Markov chains. This causes rather heavy notations to prove the lumpability of the
Markov chain. We, however, will have advantage in describing computational algorithms
based on the lumpability in a systematic way with the group theory notations.

Let GM be a permutation group on the integer set IM. If an element g in GM replaces
an integer sequence (xi, X^, - - + , xM) with an integer sequence (yl , y2, , yM), then we write
the replacement as y = g(x) where X = (xi, X;, - , xM) and y = (yi, y2, - - ,yu) - For
any ĝ and g2 in GM, we define the product of two permutations g1 and g2 in the form

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Lumpability in LRU Stack 95

Let
.*

j = m ! , n * = (M - m) ! and i *= (t) .

Clearly for any value m 6 IM-l, is a subgroup in GM and Ktrn) is a subgroup in Om).
Consequently, by choosing K^ and L^ as coset leaders for and GM, we can formulate
the respective coset decompositions of the subgroup L^ and the group GM expressed in
the formulas

Substituting the decomposition form (3.2) into (3. l), we have the overall decomposition
form

i* n* J*
(m) (m) (m)

= U U U h j k, 9i -

Using the decomposition form (3.3); for any value m E IMWl,we can partition the set of
LRU stack states SM such that

for i = 1 , 2 , - - - , z * and j = 1 , 2 , - - - , j * .
We can see here that if we write xn = (h p (^) (U) for IT, = 1,2 , - , n*, then the

first m-sequence of parameters in the Xn have the common values

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

96 A. Tanaka & I. Kino

for any value n E In*. Consequently, all of the elements in the set A," have the common
m-sequence of parameters (xi, x2, . , X^) in the first part of state description such that
s(xi, x2, - - - , xm, *, *, - a . , *) E AY for any permutation of the other parameters.

Based on the observation, we define the first part of the parameter sequence in the set

and we respectively define the set S^ of m-length LRU stack states in the forms

where
3*

SF = (J s(a,1")) for i = 1~2,---,i* .
j=1

M! Note that the order of set S('") is Â¥

We write Q M to denote the transition matrix of the Markov chain for which the set of
states is S('") and the transition probabilities are in the form

(sfa). s(al)) =
1 a' E (a)

otherwise

for any pair of states a = (al, a2, - - - , a m) and a' = (a', a', - - - ,a'-) in S('"), where the
sequence of states in the Markov chain are arranged in increasing order with index j for set
S ! and with index i for set S^, respectively.

Theorem 3.1 A Markov chain with transition matrix QM is lumpable with respect to the
m) i* partition {A^\ A ^ , - - , A,,. and the transition matrix for the lumped process is Q}^).

Proof: To establish lumpability, the application of Theorem 6.3.2 by Kemeny and Snell
8](p.124), is sufficient and enough to show that E s i a t i e A ~ ~ qM(s(a) , s(al)) has common

2 1

values for all s(a) E A,*"* and for all i, i' E I,., j, j E Ij.. Suppose that s (a l) = ~y(a) E

A@ and s(afl) = A w a) E A F , , for a fixed state s(a) in A,'?. Since every s(al) 6 A,̂
and every s (aU) E A ~ ? have common sequence ~ ' f (~) and ~ " f (~) in the first m-tuples of

their variables, respectively, if l' # I", then am # a*), so that A,*,") # A,*,"'),, . Thus the
transition probability paia; appears once and only once at the corresponding position of the

transition from s(a) E A!" to s(al) E A,^,). We see that AiM)(al)!^ = ~ i ~) (a ~) f (~) if a1
(M) and a 2 are elements in the set A!:' for a fixed reference position I , so that if s(ai) = A; (ai)

and s(a;) E 4, then s(a!,) = AJM'(a2) is an element of the same state set A !̂. Therefore

~ s (a , l e A ~ ~ qM (s(a), s(al)) has common values for all s (a) E A:) and for all i, i' ? I,*,

j , j' E I j* . I (See Appendix for example.)
Corollary 3.1 The Markov chain with transition matrix QM is lumpable to the Markov
chain with M X M transition matrix P of the page reference Markov chain.
Proof The statement follows by choosing m = 1 in Theorem 3.1. I

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Lumpability in LRU Stack 97

3.2. Lumpability of the lumped chain

We will now show that the lumped Markov chain with transition matrix Q-) is again
lumpable with respect to alternative partitions. The state set S^ of the Markov chain
was defined by (3.7) in which states were arranged in increasing order with indexes J and i.
We will consider an alternative arrangement for states in set S^ based on an alternative
decomposition form. Since K(") is a subgroup of K(""'), by choosing as the coset
leader, we have the coset decomposition form

Substituting the decomposition form (3.10) into the decomposition form

we have the alternative decomposition form

where

i * = () , * * = (m - l) ! and k** = M - m + l .
m - 1

Using the decomposition form (3.11), for any value m G IM-~, we can partition the set of
LRU stack states SM alternative form such that

We can see that if we write xn = (g ~ g , ' " l)) (u) for n = 1,2, - . , n*, then
the first m-sequence of parameters in the Xn have the common values, i.e.,

for any value n E In*. Consequently, all of the elements in the set B,';) have the com-
mon m-tuples of parameters (xl, x2, - - - , xm) in the first part of state description such that
s(xl, x2, - , xm, *, *, . , *) E B$) for any permutation of the other parameters.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

98 A. Tanaka & I. Kino

Based on the observation, we define the first m-tuples of parameters in the set of B$)
as bz ((,$F g? gjm^) (U)) f (m) (3.16)

and we respectively define the alternative set of m-length LRU stack states in the form

and, for i = 1 , 2 , . - , i**,

where

k=l
for i = 1 , 2 , - - - , i * * and J = 1 , 2 , - - - ,J**.

Note that

for i = l , 2 , - - - ,i** and J = l, 2, -.-,F*
We write Qhm> to denote a transition matrix in which the order of states is rearranged

according to the set of states. Note that a Markov chain with the transition matrix
QV and a Markov chain with the transition matrix Qhm> are essentially the same except
for the arrangement of states in both transition matrices.

Theorem 3.2 A Markov chain with transition matrix Q^^'> is lumpable with respect to the
partition {S:">>, S;">>, . - , SW} and the transition matrix for the lumped process is
(&-l)

Proof: Using almost the same method as in the proof of Theorem 3.1, one can easily
show that Et(al)ee q(Mi\s(a) , s (a l)) has common values for all s (a) E SGm> and for all

%'j'

i , i' E I,**, J', j' G I,**. Applying the relation (3.20), one can see that the state set S?>
is reduced to the state set sim-') after the lumping procedure, i.e., Sfm> =+ sim-l) for
i = 1 , 2 , . - , i**. The statement follows by again applying Theorem 6.3.2 of Kemeny and
Snell [8]. 1

This result provides the foundation of the partial lump technique described in next
subsection.

3.3. Partial lump of the lumped chain
In the Theorem 3.2, we applied the lumping procedure for the Markov chain with transition
matrix Q^ to all of the partitions {Ŝ , S F , - - + , S F } .

We can also apply the procedure not to all of the partitions but to a part of them, say
{S^<m>, S?, - - , S:"'̂ }. As the result of the partial lump procedure for the Markov

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Lumpability in L R U Stack 99

chain with transition matrix Q&"̂ , we have the partially lumped Markov chain denoted by
~ f c ~ " " ' ~] with the state set

We write the partition for the state set in the form

For general cases, we have the following theorem.
Theorem 3.3 The Markov chain Q^fm> is lumpable with respect to the partition S^fm>..,,iTl
where i1, i2, , ir G Ii**.
Proof: The proof of the Theorem immediately follows those of Theorems 3.1 and 3.2. 1

4. Invariant vector of the Markov chain
We consider a method to calculate the invariant steady-state vector of the Markov chain

QM in this section. The invariant vector can be obtained by using combination of three
techniques. These are the partial lump method based on the lumpability of the Markov
chain, the block-diagonal decomposition of the principal sub-matrix of the lumped chain
and the recursive reduction technique.

4.1. Partial lump method
(m-l)ls$m-l) We consider a partition S,̂ ... = { Sfm>, S2 1 , s,'E-"} for a lumped

Markov chain with transition matrix Q^fm>. Applying Theorem 3.2 derived in the previous
section, we can see that the lumped Markov chain with transition matrix Q^fm> is lumpable
with respect to the partition [2 3, -, i**] We write QM7 to denote the transition
matrix for the Markov chain partially lumped with respect to the partition Ss"f',,.,i..l.

We decompose the state set into two parts Vl = Sfm> and Yll = siml) U s $ ~ -) U
m-l) - U S}.. , and we write the transition matrix in the form

where H.̂, <,l), Â¥^K1 and G) are transition submatrices for transitions Vl -+ Vl,
V\ -+ h, Yl1 -+ Vl and Yl1 -+ lflI, respectively. We write %(S) to denote an invariant vector
associated with state set S, e.g. %(S) = (7r(s(l, 2)), 7r(s(2,1)) if S = {s(l, 2), s(2, l)}.

[2 3, ..., i**] Since the invariant vector (%(Vl), ?(l$])) of the transition matrix QM7 satisfies the
equation

(%(K), %(ljll)) = (% (~ i) , %(h)) ~ y ' ".' i** l (4.2)

by applying relation (4.1), we obtain the equation

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

100 A. Tanaka & I. Kino

from which we can derive ?(Vl) in the form

where E is an identity matrix with the same order as that of @p. Since (? (s i) , ?(h)) - .
m - 1) is the invariant vector of transition matrix QM , if we have an invariant vector for tran-

sition matrix Q C 1) , then we can calculate invariant vector ?(Vl) (= ?(Sfm>)) through
equation (4.4). In a similar way, we can calculate ?(S:"̂) for z = 2 ,3 , - - , z** by choosing
partition S;"̂ ,.., instead of partition SK"^,,,*. ,. Thus, by using the invariant

vector of transition matrix Q', we can obtain all values 7T(S1m>), ,
%(S>?), which are elements of invariant vector of the transition matrix Qhm> and which
are equivalent to the elements of the invariant vector of transition matrix Q".

From Corollary 3.1, the invariant vector of transition matrix Q: is equivalent to the
invariant vector of transition matrix P. Starting from this initial vector, we can calculate
the invariant vectors of ~ g) , QE), - - - , QF step by step.

4.2. Block-diagonal decomposition
The size of <E>?, however, may become very large as the stack size m increases because
the number of states in S F is (m - 1) ! X (M - m + 1). A technique to reduce the size
of @ i ~) is required. We decompose the state set S ^ ^ of Markov chain with transition

(m-1) and T'pl = sim-l) U SF"') U . U and we write matrix Q C 1) into Tl = Sl
the transition matrix in the form

[2 , 3 , -, i**] Comparing this with transition matrices QM and QM m - 1) , we can see that their
submatrices have the following relations:

^+-l) - Q(m-1) t 1 - 1)
l [l] @ e ~ - m + l and @h1) = ~ [i j h l

where operator @ indicates the Kronecker product [6].
Since UW = ufi^c$'), a i) , we can describe Sf" in the form

Changing the order of arrangement of states in S F > such that

and using relation (4.6), we can see that submatrix @g) can be re-formed as @F* in the
form

M-m+l

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Lumpability in LRU Stack 101

m-1) m - 1) ("l- ')) '(l) , and We denote = (a l j , b l j) where alj = (a^- l)) f (l) and blj = (a l j
denote

M j**

= U U s(b!:-",a!;) and = ylI \ \ K 1 .

We can see that transition from the state in V[li to state s (a t l) , a k)) in V\ may oc-
m-1) m-1) - cur only from state s(blj , a k) in with transition probability p/^-.l where -

((a ! y 1) ' ^) f l 1) , and that no transition may occur from any other state in V:.
Consequently, we can rewrite @ [; l) as @^;l)* in the form

where

We use the following notations henceforth:

S (a , [x] , b) = (s (a ,a i [x] ,b))* ' ~ = l and % (a , [x] , b) = (v (a , < ~ , [x] , b)) ~ ! Z=I (4.13)

for arbitrary vectors a, b and X = (x i 7 , xm), e.g. S(a17 [as, ay], 0 4) = (~ (a i , a27 0 3 , a4),
s(al,a3,a2,a4)) and %(al , [a2,03],a4) = (7r(a1,a2,a3,a4),^(a1,a3,a2, 0 4)) . Note that using

m-1) the notation, and applying the definition for state descriptions a' and bl j , we can
describe the state vector in the forms

Replacing %(Vl) with %(Sfm>*) , %(K)@ with %(S<^*)@* and with (%(E),
%(?m)) Q',$* in equation (4.3), and using the relation

(m-l) M
= (^[b^-l11, a t) ̂ "-"(a11 ,

we can separate equation (4.3) into a number M - m + 1 equations

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

1 02 A. Tanaka & I. Kino

for k = m, m + 1, - - . , M. From equation (4.14), we can derive state probabilities

for k = m , m + 1 , - - - , M . N
Note that i r ([b i ~ ~)] , ak) is equivalent to ??(h) which is a part of the invariant vector

m - 1) of transition matrix QM and i r ([a p] , ak) is a part of the invariant vector of transition

matrix (?*?I.

One can easily extend the derivation for i r ([a ~] , ak) to other parts of invariant vectors

i - ([a{~"], at) for i = 2,3, - - - , M by choosing (K, vil) and (T,, instead of (Vl, in
(4.1) and (Tl, ql) in (4.5), respectively. In general, we have the equation

and the solution

m - 1) (m-1) (m-1) for i = 1,2 , - - - ,i** and for k = m , m + l , - - - , M, where aij = ((hj gi) (")) l

m-1)
ail - (ai la2, . . - ,am-1) 7 b1- l) TJ = (aij Q~T') is the transition submatrix in
Q' associated with transition from the state in SF to the state in SF itself,

and

(-1) R<,?"(ai1) = diagonal { pass, }2tS+, @ ! for l = 1,2, - , rn - 1 .

4.3. Recursive reduction

We define (m - l)! X (m - l) (m - 2) - - (m - r) dimensional matrix wiml) as

m-1) - For simplicity of notation, we denote azl - f (r)
- am-1 - (a1,a2, 1 am-1) l ar = am-1

= (al, as, = - , ar) for 1 < r < m - 1, and summation of state probabilities in the form

and

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Lumpability in LRU Stack 103

= ir(a1, (a2, , am-I), a),)

= 7r(a2, (a i , a3, - - , am-I), a t)

= 7r(al, a2, (a3, , am-l), a t)

= 7r(al,(a2,a3),a4,---,arn-i,at)

= 7r(a2, (a37 ,am-i) ,ak)

= 7r(a2, (a3 ,a4) ,a5 , - - - , am- l ,ak)

= 7r(a2, a3, (al,a4, - , am-l), a t) + r (a2 , a3, ("4, - 7 am-l), a t)

= 7r(a2, (a l , as, a4), as, - , am-l), a t) + r(a2, (0 3 , a4), 0 5 , 7 am-l), ak)

and so on. Notations dr) (a, [X] , b) and (a , [X] , b) are defined in the same way as defined
in (4.13).

Postmultiplying with both sides of equation (4.14) by w { ~ - ~) , we can derive the following
formulation

(m ^) (a l) , r(m-1) (a 2) , - , (amhl)) = v(m-l) (am-1) (Â£(m-1 - ~ (~ - l) (a ~ - i)) "l

(4.18)
P a i a i Pala2

. . .
Palam-1

Payai Pa2a2
. . .

pazam-i
where ~ (~ - ~) (a ~ _ ~) =

. . .
Pam-ial Pam-iaz Pam-1am-l I

Postmultiplying W','"') with both sides of equation (4.14), we can derive the relation

Thus we can calculate ~ (~ ') (a ~ , a2) by using the ~ (~ l) (a ~) obtained in (4.18) and
(/'"-^(al, a2) which can be calculated using information given by the invariant vector of

m-1 transition matrix Qiu . Postmultiplying 1 4 3 with both sides of equation (4.14), we
have

Since

we can calculate (a l , a;, 0 3) by using the d m l) (a l , a 2) obtained in (4.19) and w(a2, as,
(a4 , - , am-l), a t) which can be calculated using information given by the invariant vector

1 - 1) of transition matrix QM .

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

1 04 A. Tanaka & I. Kino

Similarly, postmultiplying wiml) with both sides of equation (4.14), we have

3
~ m - 1) ([a l , a 2 , a 3 ~ , a 4) = (~ m - 1) (~ . , [(a i , a2 , a3)eas~ , a4)~%al , a2 , a3)) .=I (~ ~ ! - ~ . 1 , 3)) - ' -

(4.21)
We have to deal with 3 ! X 3 ! dimensional matrix Q'L if we calculate r (m l) (a l l 0 3 , a4)
directly through equation (4.21). Postmultiplying W? (= Â£ @ ei) and wi3) (= Ee @ et)

with both sides of equation (4.21), we can obtain alternative forms

3
(̂) (a l) T f) (a;))̂ (as)) = (1 1 $(as [a3 @ as], a t) ~ 3 %) 1 1) s=l (E3 - (a,)) -l

(4.22)

and T^-^ (0 1 , 0 2 , 03) = {^"(a2) + ̂ "-')(ail 0 2 , as, a4)}
-*- - Paia i

where

Thus we can calculate d m l) (a l , a;, a3) through alternative equations (4.22) and (4.23)
dealing with 3 x 3 matrix ~ (~) (a 3) instead of matrix Q ̂in equation (4.21).

For general cases, by postmultiplying w P 1) with both sides of equation (4.14), we can
derive the following form for n = 3,4 , a - , m - 2.

We can see that both forms (4.17) and (4.24) have a very similar structure. Using this
similarity, postmultiplying W^ with both sides of equation (4.24) for S = 1,2 , . - - , n - 2,
we can derive another set of equations each of which is again similar to original equation
(4.24) which has a smaller matrix than that of original matrix Q{") .

1 - 1 1 Applying the procedure repeatedly, we can finally obtain the form T ~ - ~ (a l , , - . , am-;)
which is equal to element 7r(al, a - , am-ll a t) of invariant vector of transition matrix Q F) .
Thus we can calculate each element of the invariant vector of transition matrix Q P) given
that of Q C 1 ' .

5. Computational algorithm
The calculation algorithm for the invariant vector of transition matrix Q ^ given the in-
variant vector of transition matrix Q- is described in the following. We define the index
set

The main procedure to calculate the invariant vector of the transition matrix for a
m-length stack LRU is { begin : Call Calculation[m] : end }. The main procedure
Calculation[m] calls Procedure[m-l] which is recursive, i.e., Procedure[m-l] calls

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Lumpability in LRU Stack 105

Procedurelr-l] for r = 2,3 , - - - , m-3. (See Appendix B for computation sequence of the al-
gorithm.) The main procedure Calculation[m] and the recursive procedure Procedurejr-
l] are defined as follows.

Calculation[m]: Input : %([l, 2, - - - , m - l]) Output : %([l , 2, , m])
(M) begin : For am = 1 to M { (l) For (21 , i2, , im-l) â Jm_1 { (2)

am <- (ail 7 "12 1 7 7 am)
For i = l, 2, - - ,m - 1 For am-l] {(4)

: end.

Procedure[l]: Input : a2 = (a1, a2) and (a2). Output : 7-2 (a l , a2).

begin : : end.

begin :

T3 ([a1 021 a3) (1 1 ail 7 a3) R? (a2) 1 1)'^,=l (~ 2 - ̂ (a 2)) -l

: end.

Procedure [r- l]:

Input : a, = (a l , a 2 , - . . , a r) ; $r-l)([ar.l 9 ai] ,ar) for o[u,_~] and i = 1 ,2 , - - - , r - 1.

Output : 7, ([a l , a2, - , ar-l] , a,).

begin :

Call Procedure[s-l] } (2) }m
: end.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

A. Tanaka & I. Kino

6. Examples
Two examples for stack distance distribution are shown in this section. We will hereafter

assume that the number of pages equals seven (M = 7) for those two examples, and assume
the transition matrix P have the property zLi Pij = l, VJ 6 I?, so that the steady state
distribution in the original page reference, i.e. the invariant vector of P, can be given by

Since each page is referred with the same probability in the original page reference, if an
independent-page-reference is assumed, then the stack distance distributions for both of the
examples are the same as the distribution

The two examples, however, will show that the stack distance distributions are much dif-
ferent from those of the independent-page-reference, if we assume the Markovian-page-
reference. Those results suggest that an independent-page-reference model is insufficient
for evaluating the LRU caching strategy. The first example has "loop" structure and the
second example has "self reference" structure in each Markov chain for the page-reference.
We developed a set of Mathematica programs (about 500 lines) which calculated the stack
distance distributions for the examples based on the algorithm described in the Section 5.
Example 6.1 (Loop) Let P be the transition matrix described below. This Markov chain
has "loops" in its state transition.

& 1 - & 0 0
0 & I - & 0
0 0 & 1 - E

P = 0 0 0 E

0 0 0 0

+ p 0 0 0
1 - ^ - p 2 0 0 0

Figure 1: Markov chain containing loop structures

In this example, the Mathematica programs can produce not only numerical result but
also exact solution for the the stack distance distribution P(6) as in the form

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Lumpability in LRU Stack

Table 1: Numerical Result for E = 0.2 in Example 6.1

Stack Distance (6)
p 1 2,3,4,5 6 7

0.1 0.20 0 0.00 0.80
0.3 0.23 0 0.17 0.60
0.5 0.26 0 0.34 0.40
0.7 0.29 0 0.51 0.20
0.9 0.31 0 0.69 0.00

(a) Three Dimensions

0 1 2 3 4 5 6 7 8
Stack Distance

(b) Two Dimensions(p = 0.5)

Figure 2: Stack Distance Distribution for e = 0.2 in Example 6.1.

It took about 30 minutes CPU time for obtaining the result on a MIPS R4000 based UNIX
workstation. Numerical results, given E = 0.2, are shown in Table 1, and Fig. 2.

Example 6.2 (Self Reference) We can construct a transition matrix P in which the
probabilities of "self reference" become greater than the others, by using the following
procedure.

Let qi = p(1 - p)' (geometric distribution with parameter p) for i = 0,1,2,3.

Define that

Construct the transition matrix as follows:

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

108 A. Tanaka & I. Kino

Table 2: Numerical Result of Stack Distance Distribution for Example 6.2.

'pi

Figure 3: Markov chain with "self reference" characteristics

0.1
0.3
0.5
0.7
0.9

Stack Distance

Stack Distance(&)

p1 2 3 4 5 6 7
0.25 0.20 0.14 0.11 0.094 0.095 0.11
0.32 0.19 0.14 0.10 0.081 0.078 0.091
0.43 0.18 0.12 0.085 0.063 0.056 0.068
0.60 0.15 0.088 0.057 0.039 0.031 0.037
0.84 0.079 0.033 0.018 0.012 0.0081 0.0078

(a) Three Dimensions

Ã‘

j 2 3 4 5 6 7 B
Stack Distance

Two Dimensions(p = 0.5)

Figure 4: Stack Distance Distribution for Example 6.2.

The stack distance distribution calculated with the Mathernatica programs are shown in
Table 2 and Fig. 4. It took about 20 minutes CPU time for calculating the stack distance
distribution for each p.

7. Evaluation of the efficiency
We evaluate approximately the computational efficiency of the proposed method comparing
with the method derived by Chu and Knott [7]. We refer the proposed method to the lump-
ing method and the method of Chu and Knott to regular-expression method, respectively.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Lumpability in LRU Stack 109

Since both of them have the same space complexity, i.e., they require at most M X M size
of matrix operations, we consider just the computational complexity.

In both methods, the matrix inversion form of (En - A n) ' , n = 1,2, , M , appear as
fundamental operations in their calculation, where An is a n-dimensional matrix. Hence, we
estimate the frequency of appearance of the matrix inversion form in both of the methods
and compare the computational complexity, and we use frequency of multiplications as a
measure of the computational complexity. Based on the observation that a number n3 of
multiplications is required to solve an n-dimensional linear equation, we assume that the
computational complexity to calculate n-dimensional matrix inversion form of (En - An)-'
requires a number of multiplications in the form cn = c n3, where c is a proportional
constant. We write CL (M) and Cp(M) to describe total computational complexity for the
lumping method and regular-expression method, respectively.

Lumping method: Let Dm-1 be the computational complexity to calculate the invari-
ant vector 7r(al, a2, , am) given the invariant vector 7r(a1, a2, , am-l) for all of feasible
states by using equation (4.4). By applying the partial lump method and the block-diagonal
decomposition, we can decompose the equation (4.4) to a number M - m + 1 of equations

as shown in the form (4.15). that have the common coefficient matrix (Â£'(m-!) - Qll
We write K m v l to describe the computational complexity to solve the equation (4.15). Since
a parameter ak in equation (4.15) may take a number M - m + 1 values and a number of
possible sequences of the other parameters (al, a2, - - , am-l) is the combinations of M taken
m - 1 at a time, we have the relation

Note that Kl = cl and K2 = 02. We consider the computational complexity to solve
the equation (4.18) and the equation (4.24), which are derived by multiplying W? and
wLm1) with both sides of the equation (4.14), respectively. The computational complexity
to solve the equation (4.24) is cm-1 clearly. A parameter an in the equation (4.24) may take
m - 1 values and a number of possible sequences of the other parameters (al, a2, , an-l)
is the combinations of m - 2 taken n - 1 at a time. Since the computational complexity
to solve the equation (4.24) for a set of fixed parameters (al, a2, , an) is equivalent to
Kn-1, the computational complexity to solve the equation (4.24) for all of feasible set of
parameters is

(m - l)("- n - 1 ')Kn-, -("Â¥ ')Knwl

for n = 2,3, - - - , m - 2. Thus, for m > 4 , we have the relation

The computational complexity to calculate the initial values (7r (l) , 7r (2),
Therefore we have the relation

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

110 A. Tanaka & I. Kino

Regular-expression method: The algorithm requires n-dimensional matrix inversion
operation for n = 1,2, , , M for a set of fixed parameters (a1, 0 2 , - . , aM) in addition to the
calculation of initial values, and the order of feasible set of parameters is the permutations
of M taken M at a time. In this case, we can estimate the frequency of multiplications
explicitly in the form

Comparison of the efficiency: Table 3 shows the computational complexity CL(M),
CR(M) and the ratio CR(M)/CL(M) for M = 2,4, - , 16, respectively.

Although real efficiency of the algorithms depends on not only frequency of multiplica-
tions but also data structure and the other operations, as shown in Table 3, the lumping
method shows better efficiency than that of the regular-expression method. The amount of
C L (M) , however, increases rapidly as the number M of pages increase, so that computation
for a large number of pages may become intractable. For example, if we assume that one
operation of multiplication requires 10 ns (10 X 1 0 9 second) and c = 1, then it takes more
than one year to compute the distribution for the case M = 16. Thus, from a practical view
point, one can say that evaluation of the efficiency for both of the methods does not make
sense any more in those cases that M is greater than 16.

Table 3: Frequency of multiplications (c = 1).

8. Summary
We presented the lumpability of the Markov chain for an full-length LRU stack. We also
developed a new computation method that is based on the characteristics of the Markov
chain. With the help of this method, we showed some numerical examples of LRU stack
distance distributions. These results reconfirm that assuming independent page references
is much simpler in analyzing practical LRU caching algorithms than assuming Markovian
page references. We are not likely to find the same characteristics of lumpability in other
page replacement algorithms, such as FIFO and LFU (Least-Frequently-Used). We thus
need alternative methods of analysis in these cases.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Lumpability in LRU Stack 111

Acknowledgment
The authors express their sincere thanks to three anonymous referees whose comments were
valuable in revising the original manuscript.

Appendix

A. Example of lumpability
We consider the case where M = 4 and m = 2. We have 4! = 24 states for the Markov
chain with transition matrix Q4. The state set S4 of the Markov chain is described by

We can write the decomposition form (3.3) of permutation group G4 in the form

Note that i* = 6, n* = 2, J* = 2, U = (1,2,3,4),

According to the decomposition form (A.l), we can partition S4 such that

(2) (2) (2) where A,';) = {s(an) 1 an = (h, kn gi) (U) , n = l , 2 } for i = 1 , 2 , . . - , 6 , J = l , 2

that is

Based on the partition (A.2), we can describe the Markov chain Q4 in the form

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

A. Tanaka & I. Kino

Clearly, the transition matrix Q4 satisfies the condition (Theorem 6.3.2 of Kemeny and
Snell [g]) for lumpability with respect t o the partition (A.2).

Since ag)(u) = (1,2), a 3 u) = (2, l) , a 3 u) = (1,3), a$ (U) = (3 , l) and so on,
we have = {s (l ,2) , s(2,1)}, S? = {s (l ,3) , s(3, l)}, S? = {s (l ,4) , s(4, l)}, SF =

{s(2,3), s(3,2)}, si2) = {s(2,4), s(4,2)} and S? = {s(3,4), s(4,3)}. Thus, the transition
matrix of the lumped process can be written in the form

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Lumpability in LRU Stack 113

Lumpability of the lumped chain: Based on definition (3.15), we have alternative
partition in the form

(2) - and so on. Since {b l l , - (1,2), bg!, = (1,3), b g = (1,4)} , {bE\ = (2, l) , bg!, =

(2,3), bz' = (2,4)} and so on, we have

and so on. Thus, based on the alternative partition (A.3), we can rewrite the transition
matrix Q \ into the alternative transition matrix Q>^ in the form

Clearly, the transition matrix Qf2> is lumpable with respect to partition (A.3) (Theorem
3.2) and the transition matrix for the lumped process can be written in the form

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Partial lump in the lumped chain: The transition matrix Qf2> is lumpable with respect
to the partition

(Theorem 3.3) and the transition matrix of the lumped process is written in the form

Partial lump method: Applying notations in the matrix form (4.1) to the matrix (A.4),
we have matrices

With the notations in the equation (4.4), we can derive equation

Solving the equation (A.5), we can obtain (7r(1,2), 7r(l,3), 7r(l, 4)) , a part of the invariant
vector for matrix Q\), given (7r(2), 7r(3), ~ (4)) ~ and a part of the invariant vector for matrix
Q . Applying the procedure to the other partitions, we can derive the full-length invariant
vector for matrix Q \ .
Block-diagonal decomposition: We consider another example. Suppose that M = 6

and m = 4. The matrix ^>" can be written in the form

(4) (3) all - Qn @J E3 where (3) s(2,1,3)
211 - s(2,3, l)

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Lumpability in LRU Stack 115

Changing the order of arrangement for states according to (4.9) and (4.11), $g1 and
43, can be reformed such that

f i f ? (172 ,3)= ("l) , ~ $) (1 , 2 , 3) = and ~ (3) (1 , 2 , 3) =
P3 1 (p 1 3 Ã ˆ '

Therefore the equation (4.17) takes the following form in this case.

where a t may be 4,5 or 6.

Note that %([l , 2,3l, a t) = (7 4 7 27 3 , a t) , ~ (1 7 37 2, Q) , - 7 7r(3,2,17 a t)) , 7r([(17 2 ,3) e
l] , a/;) = E([2 ,3] , ak) = (7r(2,3, a t) , ~ (3 ~ 2 , a t)) and so on.
Recursive reduction: Multiplying W ? (= E3 @ ek) by both sides of the equation (A . 6) ,
we derive the following relation.

where

Note that d3)(l) = ~ (1 , (2 , 3) , a t) , d 3) (1 , 2) = 7r(l ,2 , , a t) , and so on. We can calculate
values {Ãˆ!'(* (*, *) , *)} through equation (A.7) given the invariant vector E([*, * , *]) of matrix
QF). Substituting these values of {T(*, (*, *), *)} into the right of equation (A .8) , we obtain
the invariant vector E([*, * , * , *]) of transient matrix QP). For larger transition matrices, we
can apply the procedure again and again recursively.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

116 A. Tanaka & I. Kino

B. Computation sequence of the algorithm
For m = 1: (7 r (l) , 7r(2), - - - ,7r (M)) : the invariant vector of the Markov chain P.

For m = 2:

For m = 3:
C alc [3]

v Proc[2]

For m = 4:
Calc [4]

v Proc[3]
+ Proc[l]

For m = 5 :

For m = 6:

For m = 7:
Calc[7] -+ Proc[6]

v Proc[l] -+ Proc[2] -+ Proc[3] -+ Proc[4]
+ Proc[l] v Proc[l]

V Proc[2]

For m = 8:

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

Lumpability in LRU Stack 11 7

References

[l] G. Birkov and S. Mac Lane, A Survey of Modem Algebra (The Macmillan Company,
New York, Revised Edition, 1953).

[2] R.P. Dobrow and J.A. Fill, The Move-to-front rule for self-organizing lists with Markov
dependent requests, 57-80 (Discrete Probability and Algorithms, Springer-Verlag,
1995).

[3] D. Ferrari, Program Behavior, IEEE Computer,9 (11) (1976) 7-8.

[4] M. Hofri and P. Tzelnic, The working set size distribution for the Markov chain model
of program behavior, SIAM J. Comput. 11 (1982) 453-466.

[5] K. Lam, M-Y Leung and M-K Siu, Self-organizing files with dependent accesses,
J. Appl. Prob. 21 (1984) 334-359.

[6] A. Graham, Kronecker Products and Matrix Calculus with Applications (Ellis Horwood
Limited, 1981).

[7] J-H Chu and G.D. Knott, A new method for computing page-fault rates, SIAM
J. Comput. 22 (1993) 1319-1330.

[8] J.G. Kemeny and J.L. Snell, Finite Markov Chains (D. Van Nostrand Company, 1960).

[g] D. E. Knuth, The Art of Computer Programing, Searching and Sorting, 3 (Addison-
Wesley, 1973).

[l01 B. Nitzberg and V. Lo, Distributed shared memory; A survey of issues and algorithms,
Computer, (1991) 52-60.

[I l] Smith, A. J., Bibliography on paging and related topics, Operating System Rev., 12
(1978) 39-56.

[l21 J.R. Spirn, Distance string models for program behavior, IEEE Computer, 9 (1 1) (1976)
14-20.

[l31 J.R. Spirn, Program Behavior: Models and Measurements (Elsevier-North Holland,
N.Y., 1979).

[l41 R. Turner and B. Strecker, Use of the LRU stack depth distribution for simulation of
paging behavior, Comm. ACM, 20 (11) (1977) 795-798.

Atsuhiro Tanaka (S $!?B) and Issei Kino ($E -I&)
C&C Media Research Laboratories NEC
Miyazaki Miyamae-ku Kawasaki 216 Japan
omochi@ccm.cl.nec.co.jp and kino@ccm.cl.nec.co.jp

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.

