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Abstract The dynamic behavior of programs is studied through LRU (Least-Recently-Used) stack dis- 
tribution assuming Markovian page references. We propose a new analysis method to calculate steady state 
probabilities for the LRU stack. We first prove that a Markov chain which describes the behavior of an 
LRU stack of full-length is lumpable to a Markov chain having a smaller transition matrix than that in the 
original Markov chain. Based on this lumpability, we propose an algorithm to calculate the invariant vector 
for the transition matrix of the Markov chain for a full-length LRU stack. We show numerical examples 
calculated with the proposed algorithm, and evaluate computational efficiency of the proposed method. 

1. Introduction 

An awareness of the influence of dynamic behavior of programs on the performance of 
computer and/or network systems is essential in the design and development of success- 
ful systems [3, 131. The caching technique was developed based on the observation that 
programs tend to reference part of the address space more frequently than other parts for 
during certain periods of time. We can apply the caching technique to  increase the execution 
speed of computer program that accesses secondary storage. Besides its use in operating 
systems, applications of the caching technique can be found in many computer and/or net- 
work systems, such as distributed shared memory[10], file organizing technique[2, 51, and so 
on. Smith [l11 has provided a complete bibliography on those techniques. In the caching 
technique, the rules used to decide which pages should be moved and when they should be 
moved are called page replacement algorithms, which have been a subject of considerable 
interest in computer science for a long time. The LRU (Least-Recently-Used) algorithm is 
known to be one of the most effective techniques and has been used in many systems. The 
LRU is known as alternative name MTF (Move-To-Front) in the study of file-self-organizing 
problems. The LRU stack distance distribution was proposed by Spirn [l21 as having the 
best representation of essential characteristics of program behavior, and has been studied by 
many authors, e.g. [12, 141. Most previous studies on the LRU stack algorithms assumed an 
independent page reference sequence. Knuth [g] pointed out, however, that computational 
experiments indicate that the MTF (LRU) algorithm works even better than predicted 
results with the independent-reference assumption, because successive accesses are not in- 
dependent of each other. Though Markovian-page-reference assumption is more realistic 
than the independent-reference, not much work has been done in this direction. 

Crucial problems in the study for the LRU stack with Markovian page references are how 
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to reduce space complexity and computation time complexity for a huge size of transition 
matrix which describes the transition of an full-length LRU stack. Since size of a transition 
matrix to describe an full-length LRU stack for a M-page program is M! X M!, it becomes 
immediately intractable to compute the transition probabilities for the Markov chain, even 
if the page size is a moderate number. For example, the size of transition matrix for an 
full-length LRU stack is 3,628,800 X 3,628,800 if the program refers to 10 pages. 

Chu and Knott [7] studied several general cases of Markovian page reference sequences, 
and derived steady state probabilities for the LRU stack using the regular-expression method. 
The regular-expression method can reduce space complexity for the size M! X Ad! matrix to 
matrices up to a maximum size M X M, if the program refers M pages. 

In this paper, we propose an new analysis method to calculate steady state probabilities 
for the LRU stack. The proposed method, which we call the lumping method, is based on the 
lumpability of the Markov chain which describes behavior of an full-length LRU stack. The 
lumping method has the same space complexity as that of the regular-expression method, 
and has more effective computational complexity than that of the regular-expression method 
if we choose frequency of multiplications as a measure for the complexity. We first study 
the lumpability of a Markov chain which describes the state transitions of an LRU stack 
of full-length, and we prove that the Markov chain is lumpable to a smaller Markov chain. 

ased on the lumpability, we then propose an algorithm to calculate the invariant vector 
of the Markov chain for a full-length LRU stack. To reduce matrix size, we developed 
three sub-techniques, the partial lump method, the block-diagonal decomposition and the 
recursive reduction technique. Applying those techniques one by one , we can reduce space 
complexity for the size M! X M\ matrix to matrices U to a maximum size M X M .  

The model and notations are given in the next se on. The lumpability of the Markov 
chain is described in Section 3. The technique and algorithm to derive the invariant vector 
of an full-length LRU stack are described in Sections 4 and 5, respectively. Section 6 has 
numerical examples of stack distance distributions computed with the proposed technique. 
We evaluate computational complexity for the regular-expression method and the lumping 
method, and discuss the efficiency in Section 

2. Model description and notations 
Assume that  a program consists of a number of M pages labeled 1 ,2 ,  - - , M, and page j is 
referred to with probability pii given that page 2 was most recently referred to. Thus the 
access patterns are time-independent. Assume that xEl pzj = 1, for 2 = 1,2 ,  - - . , M. We 
write 

to  denote the transition matrix for the Markov chain which generates the page reference 
sequence. 

The LRU stack with stack length m (1 < m < M )  is the ordering of page numbers of 
a program by recency of reference. We write s(al ,  0 2 ,  - - , am) to describe the state of the 
LRU stack with stack length m, where ai indicates the page number of the 2-th position 
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in the LRU stack for i = 1,2,  , m. Page a, is the i-th most recently accessed page, so 
page a1 is the most recently accessed page. Each time a page is referenced, the LRU (Least- 
Recently-Used) algorithm it replaces page number a1 stacked at the head of the stack with 
the page number of the currently-referred-to page ai in the following way: 

( a i ,  a l ,  - -  , ai-i,ai+i, - - - , a m )  , i E {1,2, ,m}  s(a1, a27 - am) =+ s(ai ,ai ,  a2, - - -  ,an,-1) , i $ - . .  ,m} (2.2) 

if the state of the stack is s(al,  a2, , am) just before the page reference. We define the 
LRU-operation A !  for position i for a given state vector a = (a1, a2, - - , am) of an m-length 
LRU stack to be 

and the LRU-operation set for an m-length LRU stack to be A^(a) = {A?'(a) 1 i = 

1,2,  , M}. We can describe the transition of states for a full-length M LRU stack with 
transition matrix QM in which transition probabilities are defined by 

^ M ( s ( ~ ) ,  s(al)) = 
Palai, if a' E ~ ( ~ ) ( a )  , 

otherwise 

where a = (a1, a2, - . , a^) and a' = (a^ a;, , a h )  and paia; is the time-independent 
probability that page a; is referenced given that page a1 was just referred to. The order of 
the state set SM of the Markov chain is M !. We assume that the LRU stack has a steady 
state. 

For simplicity, the notations used in this paper will usually not distinguish between ran- 
dom variables and particular values of them. For example, the notation P(s(a l ,  0 2 ,  - - - ,  am)) 
is used for the probability that the random variables (al, a2, - - , am) will take generic values 
of (al ,  0 2 ,  - . , am),  if the context is such that confusion is unlikely to occur. We denote the 
steady state probability for the LRU stack with length m by 

We say that a page reference has distance i, if the state of the full -length LRU stack is 
s(al ,  a2, - - - , aM) just before the page reference, and if the referred to  page is ai. The stack 
distance 6 is a random variable defined by the distance of positions between page numbers 
which are referred to successively. Formally, using the full-length LRU stack distribution TT, 

the stack distance distribution can be defined in the form 

where Im and w[Im] denote the integer set of {l, 2, m , m} and the set of permutations on Im 
respectively. The stack distance distribution P(6} may more accurately reflect the locality 
of program behavior than the distribution P ( s ( a ) )  of the LRU stack. Using information on 
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the stack distance distribution P(% we can immediately calculate the page fault rate F(C) 
given memory storage size of C pages in the form 

Now let us introduce some notation and terminology to be used below. We write x y  to de- 

note (xyt Xy27 - 7 if = (xi, x2, ' . xm) and y = ( ~ 1 ,  92, , ~ m ) ,  e.g., (21 3, 1)(1,3,2) = 
(2,1,3). Let ~ [ x ]  be the ordered set of permutations on X,  i.e. o[x] = { x y \ y  E w[Im]}, 
where the ordering rule works in such way that x g  takes precedence over xz for any y 
and z in w[Im]- This works if the subscript for y is smaller than the subscript for z when 
regarding subscript sequence (yl , y2 , - m , ym) as an m-digit number yl y2 - ym in an m- 
ary number system. Let oi[x] be the i-th element in the ordered set ~ [ x ] .  For example, 

o[(xi1 X27 x3)] = {(El, ~ 2 7  ~ 3 ) ,  (XI ,  X31 ~ 2 ) 1  ( ~ 2 ,  ~ s ) ,  ( ~ 2 ,  ~ 3 ,  x l ) l  ( ~ 3 ,  ( ~ 3 7  ~ 2 ,  XI)} 

and Q [X] = (xi, xi, x3), Q [x} = (xi , x3, x2) , 03 [X] = (x2, xl ,  x3) and so on. Let p^) [X] 

be the ordered set of combinations of m-elements (xi,  2-2, * - , xm) taken k-elements a t  a 
time, where X = (xi, X^, - , xm) and the ordering rule works in the same way as that 
for ~ [ x ] .  Let #[X] be the i-th element in the ordered set ^[X]. For example, if 

x = (xi , x2, - - - , XM),  we denote xflm), X'^, and X = ( ~ f ( ~ ) ,  X'('")) to describe the first 

part (xi, x2, - , xm) of X ,  the latter part ( x ~ + ~ ,  xm+2, - - , xM) of X,  and the partition of X 

into these parts, respectively. For a state vector X = (xi,  x2, - - , ~ m ) ~  we write IM \ {X} to 
denote IM \ {xl, x2, - . ,  xm}. For vectors X and y, the notation x \ y  describes the difference 

set {XI, 3-2, * , xm} \{yl, 92, - a , yn}-  We write X 9 y to denote the elimination of y out of X 

without changing the order of the original sequence, e.g. (al,  0 2 ,  a3, a4) 0 (a2, a4) = (al ,  03). 
The notation u = (1,2, - .  , M) is used to describe the original state vector. We use the 
notation [lxll = xi + x2 + - - + xm to describe the summation of all elements in vector 
X = (xi, x2, - - - , xm). Finally, we let En be an identity matrix with order n and we define 

n 

3. Lumpability of Markov chains 
3.1. Lumpability of the original chain 
Since the size of transition matrix QM for a full length LRU stack is M ! X M !, exact and 
straightforward numerical computation may be intract able when more than a few (e.g., say 
ten) pages are involved. To reduce the computations so as to only involve matrices with a 
maximum size of M X M ,  we first studied the lumpability of the Markov chain for a full 
length LRU stack. We will use descriptions used in group theory [l], henceforth, to describe 
states of Markov chains. This causes rather heavy notations to prove the lumpability of the 
Markov chain. We, however, will have advantage in describing computational algorithms 
based on the lumpability in a systematic way with the group theory notations. 

Let GM be a permutation group on the integer set IM. If an element g in GM replaces 
an integer sequence (xi,  X^, - - + , xM) with an integer sequence (yl , y2, , yM), then we write 
the replacement as y = g(x)  where X = (xi, X;, - , xM) and y = (yi, y2, - - ,yu) - For 
any ĝ  and g2 in GM, we define the product of two permutations g1 and g2 in the form 
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Let 
.* 

j = m ! ,  n * = ( M - m ) !  and i *=  (t) . 

Clearly for any value m 6 IM-l, is a subgroup in GM and Ktrn) is a subgroup in Om). 
Consequently, by choosing K^ and L^ as coset leaders for and GM, we can formulate 
the respective coset decompositions of the subgroup L^ and the group GM expressed in 
the formulas 

Substituting the decomposition form (3.2) into (3. l), we have the overall decomposition 
form 

i* n* J* 
(m) (m) (m) 

= U U U h j  k, 9i - 

Using the decomposition form (3.3); for any value m E IMWl,we can partition the set of 
LRU stack states SM such that 

for i = 1 , 2 , - - - , z *  and j = 1 , 2 , - - - , j * .  
We can see here that  if we write xn = ( h p  ( ^ ) ( U )  for IT, = 1,2 ,  - ,  n*, then the 

first m-sequence of parameters in the Xn have the common values 
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for any value n E In*. Consequently, all of the elements in the set A," have the common 
m-sequence of parameters (xi, x2, . , X^) in the first part of state description such that 
s(xi,  x2, - - - ,  xm, *, *, - a . , *) E AY for any permutation of the  other parameters. 

Based on the observation, we define the first part of the parameter sequence in the set 

and we respectively define the set S^ of m-length LRU stack states in the forms 

where 
3* 

SF = (J s(a,1")) for i = 1~2,---,i* . 
j=1 

M! Note that the order of set S('") is Â¥ 

We write Q M  to denote the transition matrix of the Markov chain for which the set of 
states is S('") and the transition probabilities are in the form 

(sfa). s(al)) = 
1 a' E (a) 

otherwise 

for any pair of states a = (al,  a2, - -  - , a m )  and a' = (a', a', - - - ,a'-) in S('"), where the 
sequence of states in the Markov chain are arranged in increasing order with index j for set 
S !  and with index i for set S^, respectively. 

Theorem 3.1 A Markov chain with transition matrix QM is lumpable with respect to the 
m )  i* partition {A^\ A ^ ,  - - , A,,. and the transition matrix for the lumped process is Q}^). 

Proof: To establish lumpability, the application of Theorem 6.3.2 by Kemeny and Snell 
8](p.124), is sufficient and enough to show that E s i a t i e A ~ ~  qM(s(a) ,  s(al)) has common 

2 1 

values for all s(a) E A,*"* and for all i, i' E I,., j, j E Ij.. Suppose that s (a l )  = ~y(a) E 

A@ and s(afl) = A w a )  E A F , ,  for a fixed state s(a) in A,'?. Since every s(al) 6 A,̂  
and every s (aU)  E A ~ ?  have common sequence ~ ' f ( ~ )  and ~ " f ( ~ )  in the first m-tuples of 

their variables, respectively, if l' # I", then am # a*), so that A,*,") # A,*,"'),, . Thus the 
transition probability paia; appears once and only once at the corresponding position of the 

transition from s(a) E A!" to s(al) E A,^,). We see that AiM)(al)!^ = ~ i ~ ) ( a ~ ) f ( ~ )  if a1 
(M) and a 2  are elements in the set A!:' for a fixed reference position I ,  so that if s(ai) = A; (ai) 

and s(a;) E 4, then s(a!,) = AJM'(a2) is an element of the same state set A !̂. Therefore 

~ s ( a , l e A ~ ~  qM (s(a), s(al)) has common values for all s ( a )  E A:) and for all i, i' ? I,*, 

j ,  j' E I j* .  I (See Appendix for example.) 
Corollary 3.1 The Markov chain with transition matrix QM is lumpable to the Markov 
chain with M X M transition matrix P of the page reference Markov chain. 
Proof The statement follows by choosing m = 1 in Theorem 3.1. I 
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3.2. Lumpability of the lumped chain 

We will now show that the lumped Markov chain with transition matrix Q-) is again 
lumpable with respect to alternative partitions. The state set S^ of the Markov chain 
was defined by (3.7) in which states were arranged in increasing order with indexes J and i. 
We will consider an alternative arrangement for states in set S^ based on an alternative 
decomposition form. Since K(") is a subgroup of K(""'), by choosing as the coset 
leader, we have the coset decomposition form 

Substituting the decomposition form (3.10) into the decomposition form 

we have the alternative decomposition form 

where 

i *  = ( ) , * *  = (m - l) ! and k** = M - m + l . 
m - 1  

Using the decomposition form (3.11), for any value m G IM-~, we can partition the set of 
LRU stack states SM alternative form such that 

We can see that if we write xn = ( g ~ g , ' " l ) ) ( u )  for n = 1,2, - .  , n*, then 
the first m-sequence of parameters in the Xn have the common values, i.e., 

for any value n E In*. Consequently, all of the elements in the set B,';) have the com- 
mon m-tuples of parameters (xl, x2, - - - , xm) in the first part of state description such that 
s(xl, x2, - , xm, *, *, . , *) E B$) for any permutation of the other parameters. 
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Based on the observation, we define the first m-tuples of parameters in the set of B$) 
as bz (( ,$F g? gjm^) (U) ) f (m) (3.16) 

and we respectively define the alternative set of m-length LRU stack states in the form 

and, for i = 1 , 2 , .  - , i**, 

where 

k=l 
for i = 1 , 2 , - - - , i * *  and J = 1 , 2 , - -  - ,J**. 

Note that  

for i = l , 2 ,  - - -  ,i** and J = l, 2, -.-,F* 
We write Qhm> to denote a transition matrix in which the order of states is rearranged 

according to the set of states. Note that a Markov chain with the transition matrix 
QV and a Markov chain with the transition matrix Qhm> are essentially the same except 
for the arrangement of states in both transition matrices. 

Theorem 3.2 A Markov chain with transition matrix Q^^'> is lumpable with respect to the 
partition {S:">>, S;">>, . - ,  SW} and the transition matrix for the lumped process is 
(&-l) 

Proof: Using almost the same method as in the proof of Theorem 3.1, one can easily 
show that Et(al)ee q(Mi\s(a) , s (a l ) )  has common values for all s ( a )  E SGm> and for all 

%'j' 

i ,  i' E I,**, J', j' G I,**. Applying the relation (3.20), one can see that the state set S?> 
is reduced to the state set sim-') after the lumping procedure, i.e., Sfm> =+ sim-l) for 
i = 1 , 2 ,  . - , i**. The statement follows by again applying Theorem 6.3.2 of Kemeny and 
Snell [8]. 1 

This result provides the foundation of the partial lump technique described in next 
subsection. 

3.3. Partial lump of the lumped chain 
In the Theorem 3.2, we applied the lumping procedure for the Markov chain with transition 
matrix Q^ to all of the partitions {Ŝ , S F ,  - - + , S F } .  

We can also apply the procedure not to all of the partitions but to a part of them, say 
{S^<m>, S?, - - , S:"'̂ }. As the result of the partial lump procedure for the Markov 
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chain with transition matrix Q&"̂ , we have the partially lumped Markov chain denoted by 
~ f c ~ " " ' ~ ]  with the state set 

We write the partition for the state set in the form 

For general cases, we have the following theorem. 
Theorem 3.3 The Markov chain Q^fm> is lumpable with respect to the partition S^fm>..,,iTl 
where i1, i2, , ir  G Ii**. 
Proof: The proof of the Theorem immediately follows those of Theorems 3.1 and 3.2. 1 

4. Invariant vector of the Markov chain 
We consider a method to calculate the invariant steady-state vector of the Markov chain 

QM in this section. The invariant vector can be obtained by using combination of three 
techniques. These are the partial lump method based on the lumpability of the Markov 
chain, the block-diagonal decomposition of the principal sub-matrix of the lumped chain 
and the recursive reduction technique. 

4.1. Partial lump method 
(m-l)ls$m-l) We consider a partition S,̂ ... = { Sfm>, S2 1 , s,'E-"} for a lumped 

Markov chain with transition matrix Q^fm>. Applying Theorem 3.2 derived in the previous 
section, we can see that the lumped Markov chain with transition matrix Q^fm> is lumpable 
with respect to the partition [ 2  3, -, i** ] We write QM7 to denote the transition 
matrix for the Markov chain partially lumped with respect to the partition Ss"f',,.,i..l. 

We decompose the state set into two parts Vl = Sfm> and Yll = siml) U s $ ~ - )  U 
m-l) - U S}.. , and we write the transition matrix in the form 

where H.̂, <,l), Â¥^K1 and G)  are transition submatrices for transitions Vl -+ Vl, 
V\ -+ h, Yl1 -+ Vl and Yl1 -+ lflI, respectively. We write %(S) to denote an invariant vector 
associated with state set S, e.g. %(S) = ( 7r(s(l, 2)), 7r(s(2,1) ) if S = {s(l,  2), s(2, l)}. 

[ 2  3, ..., i** ] Since the invariant vector (%(Vl), ?(l$])) of the transition matrix QM7 satisfies the 
equation 

(%(K), %(ljll)) = ( % ( ~ i ) ,  %(h)) ~ y '  ".' i** l (4.2) 

by applying relation (4.1), we obtain the equation 
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from which we can derive ?(Vl) in the form 

where E is an identity matrix with the same order as that of @p. Since ( ? ( s i ) ,  ?(h)) - .  
m -  1) is the invariant vector of transition matrix QM , if we have an invariant vector for tran- 

sition matrix Q C 1 ) ,  then we can calculate invariant vector ?(Vl) (= ?(Sfm>)) through 
equation (4.4). In a similar way, we can calculate ?(S:"̂ ) for z = 2 ,3 ,  - - , z** by choosing 
partition S;"̂  ,.., instead of partition SK"^,,,*. ,. Thus, by using the invariant 

vector of transition matrix Q', we can obtain all values 7T(S1m>), , 
%(S>?), which are elements of invariant vector of the transition matrix Qhm> and which 
are equivalent to the elements of the invariant vector of transition matrix Q". 

From Corollary 3.1, the invariant vector of transition matrix Q: is equivalent to the 
invariant vector of transition matrix P. Starting from this initial vector, we can calculate 
the invariant vectors of ~ g ) ,  QE), - - - , QF step by step. 

4.2. Block-diagonal decomposition 
The size of <E>?, however, may become very large as the stack size m increases because 
the number of states in S F  is (m - 1) ! X ( M  - m + 1). A technique to reduce the size 
of @ i ~ )  is required. We decompose the state set S ^ ^  of Markov chain with transition 

(m-1) and T'pl = sim-l) U SF"') U . U and we write matrix Q C 1 )  into Tl = Sl 
the transition matrix in the form 

[ 2 , 3 ,  -, i** ] Comparing this with transition matrices QM and QM m -  1) , we can see that their 
submatrices have the following relations: 

^+-l) - Q(m-1) t 1 - 1 )  
l [ l ]  @ e ~ - m + l  and @h1) = ~ [ i j h l  

where operator @ indicates the Kronecker product [6]. 
Since UW = ufi^c$'), a i ) ,  we can describe Sf" in the form 

Changing the order of arrangement of states in S F >  such that 

and using relation (4.6), we can see that submatrix @g) can be re-formed as @F* in the 
form 

M-m+l 
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m-1)  m -  1 )  ("l- ')) '(l) ,  and We denote = (a l j ,  b l j  ) where alj = (a^- l)) f ( l )  and blj  = (a l j  
denote 

M j** 

= U U s(b!:-",a!;) and = ylI \ \ K 1  . 

We can see that transition from the state in V[li  to state s ( a t l ) ,  a k ) )  in V\ may oc- 
m-1) m-1) - cur only from state s(blj  , a k )  in with transition probability p/^-.l where - 

( ( a ! y 1 ) ' ^ ) f l 1 ) ,  and that no transition may occur from any other state in V:. 
Consequently, we can rewrite @ [ ; l )  as @^;l)* in the form 

where 

We use the following notations henceforth: 

S ( a , [ x ] , b ) =  ( s (a ,a i [x] ,b ) )* '  ~ = l  and % ( a , [ x ] , b ) = ( v ( a , < ~ , [ x ] , b ) ) ~ !  Z=I (4.13) 

for arbitrary vectors a, b and X = ( x i 7  , xm), e.g. S(a17 [as, ay], 0 4 )  = ( ~ ( a i ,  a27 0 3 ,  a4), 
s(al,a3,a2,a4)) and %(al ,  [a2,03],a4) = (7r(a1,a2,a3,a4),^(a1,a3,a2, 0 4 ) ) .  Note that using 

m-1) the notation, and applying the definition for state descriptions a' and bl j  , we can 
describe the state vector in the forms 

Replacing %(Vl) with %(Sfm>*) ,  %(K)@ with %(S<^*)@* and with ( %(E), 
%(?m) ) Q',$* in equation (4.3), and using the relation 

(m-l) M 
= (^[b^-l11, a t )  ̂ "-"(a11 , 

we can separate equation (4.3) into a number M - m + 1 equations 
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for k = m, m + 1, - - . , M. From equation (4.14), we can derive state probabilities 

for k = m , m +  1 , - - - , M .  N 
Note that  i r ( [ b i ~ ~ ) ] ,  ak)  is equivalent to  ??(h) which is a part of the invariant vector 

m -  1) of transition matrix QM and i r ( [ a p ] ,  ak)  is a part of the invariant vector of transition 

matrix (?*?I. 

One can easily extend the derivation for i r ( [ a ~ ] ,  ak)  to other parts of invariant vectors 

i - ([a{~"],  at)  for i = 2,3, - - - , M by choosing (K, vil) and (T,, instead of (Vl, in 
(4.1) and (Tl, ql) in (4.5), respectively. In general, we have the equation 

and the solution 

m -  1) (m-1) (m-1) for i = 1,2 ,  - - -  ,i** and for k = m , m  + l , - - - ,  M, where aij = ((hj gi ) ( " ) ) l  

m-1)  
ail - (ai la2, . . - ,am-1 ) 7 b1- l )  TJ = (aij Q~T') is the transition submatrix in 
Q' associated with transition from the state in SF to the state in SF itself, 

and 

(-1) R<,?"(ai1 ) = diagonal { pass, }2tS+, @ ! for l = 1,2, - , rn - 1 . 

4.3. Recursive reduction 

We define (m - l )!  X (m - l ) ( m  - 2) - - (m - r )  dimensional matrix wiml)  as 

m-1) - For simplicity of notation, we denote azl - f (r) 
- am-1 - (a1,a2, 1 am-1) l ar = am-1 

= (al, as, = - , ar) for 1 < r < m - 1, and summation of state probabilities in the form 

and 
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= ir(a1, (a2, , am-I),  a),) 

= 7r(a2, (a i ,  a3, - - , am-I),  a t )  

= 7r(al, a2, (a3, , am-l), a t )  

= 7r(al,(a2,a3),a4,---,arn-i,at) 

= 7r(a2, (a37 ,am-i) ,ak)  

= 7r(a2, (a3 ,a4 ) ,a5 , - - - , am- l ,ak )  

= 7r(a2, a3, (al,a4, - , am-l),  a t )  + r (a2 ,  a3, ("4, - 7  am-l), a t )  

= 7r(a2, ( a l ,  as, a4), as, - , am-l),  a t )  + r(a2,  ( 0 3 ,  a4), 0 5 ,  7 am-l), ak) 

and so on. Notations dr)  (a,  [ X ] ,  b )  and (a ,  [ X ] ,  b )  are defined in the same way as defined 
in (4.13). 

Postmultiplying with both sides of equation (4.14) by w { ~ - ~ ) ,  we can derive the following 
formulation 

( m ^ )  ( a l ) ,  r(m-1) ( a 2 ) ,  - , (amhl)  ) = v(m-l) (am-1) (Â£(m-1 - ~ ( ~ - l ) ( a ~ - i ) )  "l 

(4.18) 
P a i a i  Pala2 

. . . 
Palam-1 

Payai Pa2a2 
. . . 

pazam-i 
where ~ ( ~ - ~ ) ( a ~ _ ~ )  = 

. . . 
Pam-ial  Pam-iaz Pam-1am-l I 

Postmultiplying W','"') with both sides of equation (4.14), we can derive the relation 

Thus we can calculate ~ ( ~ ' ) ( a ~ ,  a2 )  by using the ~ ( ~ l ) ( a ~ )  obtained in (4.18) and 
(/'"-^(al, a2)  which can be calculated using information given by the invariant vector of 

m-1 transition matrix Qiu . Postmultiplying 1 4 3  with both sides of equation (4.14), we 
have 

Since 

we can calculate ( a l ,  a;, 0 3 )  by using the d m l )  ( a l ,  a 2 )  obtained in (4.19) and w(a2, as,  
(a4 ,  - , am-l),  a t )  which can be calculated using information given by the invariant vector 

1 - 1 )  of transition matrix QM . 
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Similarly, postmultiplying wiml)  with both sides of equation (4.14), we have 

3 
~ m - 1 ) ( [ a l , a 2 , a 3 ~ , a 4 ) = ( ~ m - 1 ) ( ~ . ,  [ ( a i , a2 , a3 )eas~ , a4 )~%al , a2 , a3 ) )  .=I ( ~ ~ ! - ~ . 1 , 3 ) ) - ' -  

(4.21) 
We have to deal with 3 ! X 3 ! dimensional matrix Q'L if we calculate r ( m l ) ( a l l  0 3 ,  a4)  
directly through equation (4.21). Postmultiplying W? (= Â£ @ ei) and wi3) (= Ee @ et) 

with both sides of equation (4.21), we can obtain alternative forms 

3 
(̂) ( a l )  T f )  (a;)  )̂ (as)  ) = ( 1 1  $(as [a3 @ as], a t )  ~ 3 % )  1 1  ) s=l (E3 - (a,)) -l 

(4.22) 

and T^-^ ( 0 1 ,  0 2 ,  03 )  = {^"(a2)  + ̂ "-')(ail 0 2 ,  as, a4)} 
-*- - Paia i  

where 

Thus we can calculate d m l )  (a l ,  a;, a3)  through alternative equations (4.22) and (4.23) 
dealing with 3 x 3 matrix ~ ( ~ ) ( a 3 )  instead of matrix Q  ̂in equation (4.21). 

For general cases, by postmultiplying w P 1 )  with both sides of equation (4.14), we can 
derive the following form for n = 3,4 ,  a - , m - 2. 

We can see that both forms (4.17) and (4.24) have a very similar structure. Using this 
similarity, postmultiplying W^ with both sides of equation (4.24) for S = 1,2 ,  . - - ,  n - 2, 
we can derive another set of equations each of which is again similar to original equation 
(4.24) which has a smaller matrix than that of original matrix Q{") .  

1 - 1 1  Applying the procedure repeatedly, we can finally obtain the form T ~ - ~  ( a l ,  , - . , am-;) 
which is equal to element 7r(al, a - , am-ll a t )  of invariant vector of transition matrix Q F ) .  
Thus we can calculate each element of the invariant vector of transition matrix Q P )  given 
that of Q C 1 ' .  

5. Computational algorithm 
The calculation algorithm for the invariant vector of transition matrix Q ^  given the in- 
variant vector of transition matrix Q- is described in the following. We define the index 
set 

The main procedure to calculate the invariant vector of the transition matrix for a 
m-length stack LRU is { begin : Call Calculation[m] : end }. The main procedure 
Calculation[m] calls Procedure[m-l] which is recursive, i.e., Procedure[m-l] calls 
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Procedurelr-l] for r  = 2,3 ,  - - - , m-3. (See Appendix B for computation sequence of the al- 
gorithm.) The main procedure Calculation[m] and the recursive procedure Procedurejr- 
l] are defined as follows. 

Calculation[m]: Input : %([l, 2, - - - , m - l ] )  Output : %([l ,  2, , m]) 
( M )  begin : For am = 1 to M { ( l )  For ( 21 ,  i2, , im-l) â Jm_1 { ( 2 )  

am <- (ail 7 "12 1 7 7 am) 
For i = l, 2, - -  ,m - 1  For  am-l] {(4) 

: end. 

Procedure[l]: Input : a2 = (a1,  a2)  and (a2). Output : 7-2 ( a l ,  a2). 

begin : : end. 

begin : 

T3 ([a1 021 a3) ( 1 1  ail 7 a3) R? (a2) 1 1  )'^,=l ( ~ 2  - ̂  ( a 2 ) )  -l 

: end. 

Procedure [r- l]: 

Input : a, = ( a l , a 2 , - . .  , a r )  ; $r-l)([ar.l 9 ai] ,ar)  for o[u,_~] and i = 1 ,2 ,  - - - , r  - 1. 

Output : 7, ( [ a l ,  a2, - , ar-l] ,  a,). 

begin : 

Call Procedure[s-l] } ( 2 )  }m 
: end. 
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6. Examples 
Two examples for stack distance distribution are shown in this section. We will hereafter 

assume that the number of pages equals seven (M = 7) for those two examples, and assume 
the transition matrix P have the property zLi Pij = l, VJ 6 I?, so that the steady state 
distribution in the original page reference, i.e. the invariant vector of P, can be given by 

Since each page is referred with the same probability in the original page reference, if an 
independent-page-reference is assumed, then the stack distance distributions for both of the 
examples are the same as the distribution 

The two examples, however, will show that the stack distance distributions are much dif- 
ferent from those of the independent-page-reference, if we assume the Markovian-page- 
reference. Those results suggest that an independent-page-reference model is insufficient 
for evaluating the LRU caching strategy. The first example has "loop" structure and the 
second example has "self reference" structure in each Markov chain for the page-reference. 
We developed a set of Mathematica programs (about 500 lines) which calculated the stack 
distance distributions for the examples based on the algorithm described in the Section 5. 
Example 6.1 (Loop) Let P be the transition matrix described below. This Markov chain 
has "loops" in its state transition. 

& 1 - &  0 0 
0 & I - &  0 
0 0 & 1 - E  

P =  0 0 0 E 

0 0 0 0 

+ p  0 0 0 
1 - ^ - p  2 0 0 0 

Figure 1: Markov chain containing loop structures 

In this example, the Mathematica programs can produce not only numerical result but 
also exact solution for the the stack distance distribution P(6) as in the form 
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Table 1: Numerical Result for E = 0.2 in Example 6.1 

Stack Distance (6) 
p 1 2,3,4,5 6 7 

0.1 0.20 0 0.00 0.80 
0.3 0.23 0 0.17 0.60 
0.5 0.26 0 0.34 0.40 
0.7 0.29 0 0.51 0.20 
0.9 0.31 0 0.69 0.00 

(a) Three Dimensions 

0 1 2 3 4 5 6 7 8  
Stack Distance 

(b) Two Dimensions(p = 0.5) 

Figure 2: Stack Distance Distribution for e = 0.2 in Example 6.1. 

It took about 30 minutes CPU time for obtaining the result on a MIPS R4000 based UNIX 
workstation. Numerical results, given E = 0.2, are shown in Table 1, and Fig. 2. 

Example 6.2 (Self Reference) We can construct a transition matrix P in which the 
probabilities of "self reference" become greater than the others, by using the following 
procedure. 

Let qi = p(1 - p)' (geometric distribution with parameter p) for i = 0,1,2,3. 

Define that 

Construct the transition matrix as follows: 
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Table 2: Numerical Result of Stack Distance Distribution for Example 6.2. 

'pi 

Figure 3: Markov chain with "self reference" characteristics 

0.1 
0.3 
0.5 
0.7 
0.9 

Stack Distance 

Stack Distance(&) 

p1 2 3 4 5 6 7 
0.25 0.20 0.14 0.11 0.094 0.095 0.11 
0.32 0.19 0.14 0.10 0.081 0.078 0.091 
0.43 0.18 0.12 0.085 0.063 0.056 0.068 
0.60 0.15 0.088 0.057 0.039 0.031 0.037 
0.84 0.079 0.033 0.018 0.012 0.0081 0.0078 

(a) Three Dimensions 

Ã‘ 

j 2 3 4 5 6 7 B  
Stack Distance 

Two Dimensions(p = 0.5) 

Figure 4: Stack Distance Distribution for Example 6.2. 

The stack distance distribution calculated with the Mathernatica programs are shown in 
Table 2 and Fig. 4. It took about 20 minutes CPU time for calculating the stack distance 
distribution for each p. 

7. Evaluation of the efficiency 
We evaluate approximately the computational efficiency of the proposed method comparing 
with the method derived by Chu and Knott [7]. We refer the proposed method to the lump- 
ing method and the method of Chu and Knott to regular-expression method, respectively. 
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Since both of them have the same space complexity, i.e., they require at  most M X M size 
of matrix operations, we consider just the computational complexity. 

In both methods, the matrix inversion form of (En - A n ) ' ,  n = 1,2, , M ,  appear as 
fundamental operations in their calculation, where An is a n-dimensional matrix. Hence, we 
estimate the frequency of appearance of the matrix inversion form in both of the methods 
and compare the computational complexity, and we use frequency of multiplications as a 
measure of the computational complexity. Based on the observation that a number n3 of 
multiplications is required to solve an n-dimensional linear equation, we assume that the 
computational complexity to calculate n-dimensional matrix inversion form of (En - An)-' 
requires a number of multiplications in the form cn = c n3, where c is a proportional 
constant. We write CL ( M )  and Cp(M) to describe total computational complexity for the 
lumping method and regular-expression method, respectively. 

Lumping method: Let Dm-1 be the computational complexity to calculate the invari- 
ant vector 7r(al, a2, , am) given the invariant vector 7r(a1, a2, , am-l) for all of feasible 
states by using equation (4.4). By applying the partial lump method and the block-diagonal 
decomposition, we can decompose the equation (4.4) to a number M - m + 1 of equations 

as shown in the form (4.15). that have the common coefficient matrix (Â£'(m-!) - Qll 
We write K m v l  to describe the computational complexity to solve the equation (4.15). Since 
a parameter ak in equation (4.15) may take a number M - m + 1 values and a number of 
possible sequences of the other parameters (al, a2, - - , am-l) is the combinations of M taken 
m - 1 at  a time, we have the relation 

Note that Kl = cl and K2 = 02. We consider the computational complexity to solve 
the equation (4.18) and the equation (4.24), which are derived by multiplying W? and 
wLm1) with both sides of the equation (4.14), respectively. The computational complexity 
to solve the equation (4.24) is cm-1 clearly. A parameter an  in the equation (4.24) may take 
m - 1 values and a number of possible sequences of the other parameters (al, a2, , an-l) 
is the combinations of m - 2 taken n - 1 at  a time. Since the computational complexity 
to solve the equation (4.24) for a set of fixed parameters (al, a2, , an) is equivalent to  
Kn-1, the computational complexity to solve the equation (4.24) for all of feasible set of 
parameters is 

( m -  l)("- n - 1  ')Kn-, -("Â¥ ')Knwl 

for n = 2,3, - - - , m  - 2. Thus, for m > 4 , we have the relation 

The computational complexity to calculate the initial values (7r ( l ) ,  7r (2), 
Therefore we have the relation 
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Regular-expression method: The algorithm requires n-dimensional matrix inversion 
operation for n = 1,2,  , , M for a set of fixed parameters (a1, 0 2 ,  - . , aM) in addition to the 
calculation of initial values, and the order of feasible set of parameters is the permutations 
of M taken M at  a time. In this case, we can estimate the frequency of multiplications 
explicitly in the form 

Comparison of the efficiency: Table 3 shows the computational complexity CL(M),  
CR(M) and the ratio CR(M)/CL(M) for M = 2,4, - , 16, respectively. 

Although real efficiency of the algorithms depends on not only frequency of multiplica- 
tions but also data structure and the other operations, as shown in Table 3, the lumping 
method shows better efficiency than that of the regular-expression method. The amount of 
C L ( M ) ,  however, increases rapidly as the number M of pages increase, so that computation 
for a large number of pages may become intractable. For example, if we assume that one 
operation of multiplication requires 10 ns (10 X 1 0 9  second) and c = 1, then it takes more 
than one year to compute the distribution for the case M = 16. Thus, from a practical view 
point, one can say that evaluation of the efficiency for both of the methods does not make 
sense any more in those cases that M is greater than 16. 

Table 3: Frequency of multiplications (c = 1). 

8. Summary 
We presented the lumpability of the Markov chain for an full-length LRU stack. We also 
developed a new computation method that is based on the characteristics of the Markov 
chain. With the help of this method, we showed some numerical examples of LRU stack 
distance distributions. These results reconfirm that assuming independent page references 
is much simpler in analyzing practical LRU caching algorithms than assuming Markovian 
page references. We are not likely to find the same characteristics of lumpability in other 
page replacement algorithms, such as FIFO and LFU (Least-Frequently-Used). We thus 
need alternative methods of analysis in these cases. 
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Appendix 

A. Example of lumpability 
We consider the case where M = 4 and m = 2. We have 4! = 24 states for the Markov 
chain with transition matrix Q4. The state set S4 of the Markov chain is described by 

We can write the decomposition form (3.3) of permutation group G4 in the form 

Note that i* = 6, n* = 2, J* = 2, U = (1,2,3,4), 

According to the decomposition form (A.l), we can partition S4 such that 

(2) (2) (2) where A,';) = {s(an) 1 an = (h, kn gi ) ( U ) ,  n =  l , 2 }  for i = 1 , 2 , . . - , 6 ,  J = l , 2  

that is 

Based on the partition (A.2), we can describe the Markov chain Q4 in the form 
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Clearly, the transition matrix Q4 satisfies the condition (Theorem 6.3.2 of Kemeny and 
Snell [g]) for lumpability with respect t o  the partition (A.2). 

Since ag)(u) = (1,2),  a 3 u )  = (2, l) ,  a 3 u )  = (1,3),  a$ (U) = ( 3 , l )  and so on, 
we have = {s ( l ,2 ) ,  s(2,1)}, S? = {s ( l ,3 ) ,  s(3, l)}, S? = {s ( l ,4 ) ,  s(4, l)}, SF = 

{s(2,3), s(3,2)}, si2) = {s(2,4), s(4,2)} and S? = {s(3,4), s(4,3)}. Thus, the transition 
matrix of the lumped process can be written in the form 
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Lumpability of the lumped chain: Based on definition (3.15), we have alternative 
partition in the form 

(2) - and so on. Since {b l l ,  - (1,2), bg!, = (1,3), b g  = (1,4)} , {bE\ = (2, l ) ,  bg!, = 

(2,3), bz' = (2,4)} and so on, we have 

and so on. Thus, based on the alternative partition (A.3), we can rewrite the transition 
matrix Q \  into the alternative transition matrix Q>^ in the form 

Clearly, the transition matrix Qf2> is lumpable with respect to partition (A.3) (Theorem 
3.2) and the transition matrix for the lumped process can be written in the form 
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Partial lump in the lumped chain: The transition matrix Qf2> is lumpable with respect 
to the partition 

(Theorem 3.3) and the transition matrix of the lumped process is written in the form 

Partial lump method: Applying notations in the matrix form (4.1) to the matrix (A.4), 
we have matrices 

With the notations in the equation (4.4), we can derive equation 

Solving the equation (A.5), we can obtain (7r(1,2), 7r(l,3), 7r(l, 4)) ,  a part of the invariant 
vector for matrix Q\), given (7r(2), 7r(3), ~ ( 4 ) ) ~  and a part of the invariant vector for matrix 
Q .  Applying the procedure to the other partitions, we can derive the full-length invariant 
vector for matrix Q \ .  
Block-diagonal decomposition: We consider another example. Suppose that M = 6 

and m = 4. The matrix ^>" can be written in the form 

(4) (3) all - Qn @J E3 where (3) s(2,1,3)  
211 - s(2,3,  l )  
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Changing the order of arrangement for states according to (4.9) and (4.11), $g1 and 
43, can be reformed such that 

f i f ? (172 ,3 )=  ("l ) , ~ $ ) ( 1 , 2 , 3 ) =  and ~ ( 3 ) ( 1 , 2 , 3 )  = 
P3 1 ( p 1 3  Ã ˆ  ' 

Therefore the equation (4.17) takes the following form in this case. 

where a t  may be 4,5  or 6. 

Note that %([l ,  2,3l, a t )  = ( 7 4 7  27 3 ,  a t ) ,  ~ ( 1 7  37 2, Q ) ,  - 7 7r(3,2,17 a t ) ) ,  7r([(17 2 ,3)  e 
l ] ,  a/;)  = E([2 ,3] ,  ak) = (7r(2,3, a t ) ,  ~ ( 3 ~ 2 ,  a t ) )  and so on. 
Recursive reduction: Multiplying W ?  (= E3 @ ek) by both sides of the equation ( A . 6 ) ,  
we derive the following relation. 

where 

Note that d3)( l )  = ~ ( 1 ,  ( 2 , 3 ) ,  a t ) ,  d 3 ) ( 1 ,  2 )  = 7r(l ,2 ,  , a t ) ,  and so on. We can calculate 
values {Ãˆ!'(* (*, * ) ,  *)} through equation (A.7)  given the invariant vector E([*, * ,  * ] )  of matrix 
QF). Substituting these values of {T(*,  (*, *), *)} into the right of equation (A .8) ,  we obtain 
the invariant vector E([*, * ,  * ,  *]) of transient matrix QP). For larger transition matrices, we 
can apply the procedure again and again recursively. 
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B. Computation sequence of the algorithm 
For m = 1: (7 r ( l ) ,  7r(2), - - - ,7r (M)) : the invariant vector of the Markov chain P. 

For m = 2:  

For m = 3: 
C alc [3] 

v Proc[2] 

For m = 4: 
Calc [4] 

v Proc[3] 
+ Proc[l] 

For m =  5 :  

For m = 6: 

For m = 7: 
Calc[7] -+ Proc[6] 

v Proc[l] -+ Proc[2] -+ Proc[3] -+ Proc[4] 
+ Proc[l] v Proc[l] 

V Proc[2] 

For m = 8: 
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