
Journal of the Operations Research 
Society of Japan 

Vol. 41, No. 1, March 1998 

A COMPOSITE QUEUE WITH VACATION/SET-UP/CLOSE-DOWN 
TIMES FOR SVCC IN IP OVER ATM NETWORKS 

Yutaka Sakai Yoshitaka Takahashi Yut aka Takahashi Toshiharu Hasegawa 
Kyoto Universzty N T T  Multimedia Nara Instztute of h'yoto Universzty 

Networks Laboratorzes Science and Technolgoy 

(Received May Z1 1997; Revised September 17, 1997) 

Abstract We consider a finite-capacity M/G/l/K queueing system with a mixture of the single vacationl 
close-down, and set-up times; arising out of the switched virtual channel connection (SVCC) mechanism 
for an IP over ATM network. Applying the supplementary variable approach, we derive the steady-state 
queue length and waiting time distributions, as we11 as the set-up occurring rate. Taking the limit of our 
results as the capacity (K) tends to infinity, we obtain the results for an infinite-capacity queueing systeml 
covering the previous work by Hassan and Atiquzzaman as a special case. 

%. Inkroduction 
Teletraffic engineers frequently encounter queueing situations with vacation time and ex- 
haustive service discipline. By vacation t ime, we mean that the server becomes unavailable 
for occasional intervals of time, and by exhaustive we mean that customers are served con- 
tinuously until there is no customer in the system. A classical example for this situation is 
the time division multiple access (TD MA) scheme where the vacation time corresponds to 
a constant slotted time period in the TDMA system. 

Under the exhaustive service discipline, the well known stochastic decomposition formula 
will be useful for infinite capacity queues; see Doshi [I] and Miyazawa [5 ] .  However, if we 
would like to evaluate the loss probability we have to treat a finite capacity system rather 
than infinite capacity systems. 

Assuming a Poisson input and a finite capacity queue, Lee [4] provided a numerical 
algorithm for this system via the embedded Markov chain technique; see also Frey and 
Takahashi [2] for a more simplified analysis for the M/G/l  /K queue with vacation time and 
exhaustive service discipline. 

Very recently in the IP over ATM networks, we can see a more complicated queueing 
situation where the close-down time as well as the set-up time are further needed- The 
close-down time here corresponds to an inactivity timer in the switched virtual channel 
connections (SVCC) environment (see Hassan and Atiquzzaman [3]). Also, the set-up time 
cannot be negligible for the ATM server. An approximate queueing result (using the M/G/ 1 
queue) has been reported in Hassan and Atiquzzaman [3]. Their approximation is based 
011 i.i.d. service time of each packet to obtain the first and second moments of the waiting 
time. However, under the existance of SET-UP time, this i.i*d. service time does not hold. 

The main goal of this paper is 1) to present a new finite capacity queueing system with 
vacation> set-up, and close-down times for the SVCC operation in IP over ATM networks? 
generalizing the queueing system of Hassan and Atiquzzaman; 2) and to provide an exact 
result for the generalized system. The approach taken here is the supplementary variable 
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technique. It should be noted that our approach enables one to treat the infinite capacity 
system by taking the limit of our result as the capacity (K) tends to infinity. We can derive 
an exact formula to the Hassan and Atiquzzaman's system [3] for a special case (the infinite 
queue without vacation). 

This paper is organized as follows. We describe the model and introduce notations 
in Section 2. Section 3 derives a set of Laplace-Stieltjes transform equations through the 
supplementary variable approach. Section 4 is then devoted to the numerical algorithm 
procedure for the steady-state probabilities. The procedure is expressed step by step to 
show our algorithm. Using these results, we express performance measures such as the 
mean waiting time, set-up rate, and loss probability in Section 5 and Section 6 presents the 
numerical result S for the performance measures. Section 7 shows that the limiting behavior 
of the finite capacity system is consistent with that of the infinite capacity system analyzed 
by the imbedded Markov chain approach. 

2. The model 
We consider an M/G/l/K system with single vacation, set-up and close-down time, where 
K represents the maximum number of customers allowed in the system. The system consists 
of the waiting room and the server. We assume a customer arrives at the system according 
to a Poisson process with intensity A independent of the system state. These arriving 
customers are served under the First-In-First-Out (FIFO) discipline, where the customers 
will be served in order of their arrivals to the system. Since we consider the system with 
a finite capacity, a customer will be lost if it finds the waiting room all occupied. We 
assume the exhaustive service discipline and the server continues to serve the customers in 
the queue until all of them are served. The service times form a sequence of i.i.d. random 
variables with distribution function (DF) B(x) and the Laplace-Stieltjes transform (LST) 

Â¥*(S $ e-"B(dx). 

We call the period where the server is working a busy period. If the server finds that 
there is no customer in the queue a t  a service completion, the system goes into a close-down 
period with DF C(x) and LST C*(s). During the close-down period, if a customer arrives, 
the server immediately begins service for that customer without set-up period and another 
busy period begins. On the other hand, if no customer arrives until the end of a close-down 
period, the system goes into a single vacation period. At the end of a vacation period, if the 
server finds one or more customers waiting, the server begins to serve for them after a set-up 
period. We denote by S(x),  S*(s) (V(x), V*(s)) the DF or the LST of the set-up period 
length (vacation period length). If the server finds no customers waiting, the system goes 
into an idle period and an arrival of a customer ends this period. Then the server begins to 
serve after a set-up period. It should be noted that our model reduces to that of Hassan and 
Atiquzzaman [3] if the capacity (K) is infinite and the vacation length is zero. We define B 
as the remaining service time. Similarly we define P,S' and C. 

We further need the following notations for our subsequent analysis. 

L : number of customers in the system including the one in the server. 

(L = 0 , - - -  , K )  
IIn,i(x)dx = Prob[L = i , x  < B < X + dx, the system is busy] 

A 

Qi{x)dx Prob[L = i, X < V < X + dx, the system is in vacation] 

II,s,i(x)dx s Prob[L = ! " , X  < 5'5 X +  dx, the system is setting-up] 
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Prob[L = i ,  X < C < X + dx, the system is closing-down] 
00 

e-"nB,; (dx) I I G , i ( ~ )  1 e-sxIIv,i(dx) 

00 00 

s x I I s , i  (dx) e-sxIIc,i (dx) 

3. Supplementary variable approach 
In this section, we obtain Laplace-Stieltjes transforms, II;,o(s), IIb(s) (0 < i < K), 
II'5,;(5) (1 < i < K), and I'I$ld-s) (1 < i < 1% which are the bases of analysis in the 
following section. 

Since the service, vacation, set-up, close-down times are generally distributed (having 
non-Markovian property), the queue length process does not form any Markov chain. Here, 
the supplementary variable technique is applied to make our system Markovian. To be more 
exact, the joint distribution of the queue length and the remaining service (vacation, set-up, 
or close-down) time forms a Markov process. Observing the system state at time t and 
t + At, we have following equations. 

where II* is the probability that the system is idle at  an arbitrary time. Equating the rate 
at which a vacation period ends with no customers present to the rate at which the idle 
period following ends because of arrivals, we have 

During the close-down time, an arriving customer may end the period, thus 
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Taking into account (1) and (2)) we obtain Laplace-Stieltjes transforms, 

4. System state probability 

In this section we give IIc,o(0), II&,o(0), IIv,,(O) (0 5 i I(), IIki(0) (0 5 i  5 K), 
WO) ( l  5 i 5 K ) ,  Q,;(()) (l 5 i 5 I<), I IB , , (O)  (1 5 i 5 K )  and q ( 0 )  (1 5 i 5 K ) .  
From these results we obtain the system state probability a t  which close-down/vacation/set- 
up/service/idle periods end and at an arbitrary point. In the following we express all 
probabilities in terms of llB1 (0). At last we have TiBl (0) from the normalization condition. 
4.1 IIc,o(O) and II;,o(0) in terms of I I B , ~ ( O )  
We express IIo,o(O) and I I S O )  in terms of IIB,~(O). Substituting s = A and s = 0 into (3) 
yields 

4.2 IIv,;(O) (1 5 i  5 K) and 11$,,(0) (1 5 i 5 K )  in terms of IIB,l(0) 
We then express IIv,i(0) (1 5 i S I() and lIF,i(0) (1 i 5 K) in terms of IIB,~(O). 
Substituting s = A into (4) and (5), we have 

WO) = w O ) C * ( A ) V * ( A )  

nv,i (0) = AII$,i_l (A), for 1 5 i 5 I< - 1. 

Differentiating (4) and (5), and inserting s = A, we have 

-(n + l)~lV,t)(A) = n B , l ( o ) ~ * ( ~ ) v * ( n + l ) ( ~ ) ,  for n > O (17) 

-(n + ~ ) I I $ ) ( A )  = A I I ~ , ~ _ ~  *^"(A), f o r n > o , i > l .  (18) 

Using (17) and (18)) we have 

&,;(A) = (-1)'"" 
Ai 

(i + l )!  
D ~ , ~ ( O ) C * ( A ) V * ( ~ + ~ ) ( A ) ,  f o r 0 5 i 5 A : - 2 .  (19) 
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From (19), (15) and (16) we can express MO) (0 5 i S I{ - 1) in terms of H p l  (0). Indeed 
we have 

Next we substitute S = 0 into (4), (5) and ( 6 ) ,  yielding 

Since we have IIV,i(0) (1 <: z <: I{ - 1) in terms of IIBj1(O) we can easily express Tl'y,(O) (0 < 
i 5 K - 1) in terms of IIB,l(0) using (22) and (23). Together with these results and (24), 
we have nv,l<{O) in terms of nB,l(0) 

Differentiating (4), (5) and (6), and substituting S = 0 yield 

AII$,)(0) = II;,o(0) + n ~ , 1  (o)c*(A)v*(~)(o) (26) 

AII$(O) = n;,,(o) + AII$^O), for l < i 5 K - 1 (27) 

-r~;,~<-(o) = (0). (28) 

From these results, we can express IIcIs- (0) in terms of IIB,l (0) 

Hereby we complete our procedure. 
4.3 MO) (1 5 i S A') and II;,(O) (1 5 i < K )  in terms of IIB,l(0) 
We are next in a position to express IIS,;(0) (1 < i 5 I<) and 11^,,(0) (1 5 i <: I-) in terms 
of (0). Substituting S = A into (7) and (8) yields 

Differentiating (7) and (g), and substituting s = A, we have 

Using (32) and (33), we have 

p- l i-2 A^ 
nS,i(A) = (- 1)'- (IIv,o(O) + Hv,l(O)) S*") ( A )  + X(- l)^+' IIv,i_j (o)s*('+"(A), 

(2) '  j=o ( j  + 1)' 
for 2 i < K -  2. (34) 
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From (34), (30) and (31), we can express MO) (1 <: i <: K - 1) in terms of IIB,l (0) and 

M O )  (1 <: i I<). We obtain 

and 

\i-2 

(i - l)!  (IIv,o(O) + b , J O ) )  s*(-"(A) 

i -3  

+ E ( - l ) j + l  
\J 

( j  + l ) !  ̂ v,;--l.. (0) s * ( j + l ) ( ~ )  + nV,. (o)s* (A),  j=o 
for 3 i < K -  1. (37) 

Remember that we have already expressed IIVTi(0) (1 < i <: K )  in terms of tig1(0).  There- 
fore, from (35), (36) and (37), we can express W O )  (1 $ i < A' - 1) in terms of b , l ( 0 ) .  
As before, substituting S = 0 into (7), (8) and (9) yields 

Since we have IIs,i(0) (1 $ i $ K- 1) in terms of IIB,1 (O), we can easily express It%;-(0) (0 < 
i < I< - 1) in terms of IIB,l(0) using (38) and (39). Together with these results and (40), 
we have &,K{O) in terms of IIBl(0). 

At last, differentiating (7), (8) and (9) and substituting S = 0 yield 

From these results, we can express 11&(0) using IIB,1 (0) 

4.4 V.B,;(O) (1 $ i 5 A') and Hg,,(O) (1 $ i $ A") in terms of IIB,~(O) 
We now express V.B,~(O) (1 <: i I<) and H'B,i(o) (1 $ i <: K )  in terms of nB,l(0).  
Substituting S = A into (10) and (1 l ) ,  we have lastly 
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Differentiating ( 1 0 )  and ( l l ) ,  then substituting s = A, we have 

for n > 0 

Using ( 4 8 )  and ( 4 9 ) ,  we have 

A-I n B , J  ( 0 )  
H&,i(A) = ( - 1 )  - 

( i ) !  B*(\) 
B*(') ( A )  

i-2 

+ E(-l)i+l \3 
( j  + 1)' ( ^ ~ , i + l - ,  ( 0 )  + ̂ S,,-, (0)) B*'~+"(A), j=o 

From ( 5 0 ) ,  ( 4 6 )  and ( 4 7 ) ,  we can express V . g i ( 0 )  (2 < i < K - 1 )  in terms of I IB, l (0)  and 
IIs,i(0) ( 1  < i S; A'). Thus we have 

W O )  = 
n ~ , i - i  ( 0 )  H&,i-2(A) 

B* ( A )  
- A 

B* ( A )  
- ns,i-1 ( O ) ,  for 4 < i 5 K. 

From ( 5 0 ) ,  we notice that the r.h.s. of ( 5 3 )  contains the terms H B j ( 0 )  ( 1  S; j <: i  - 1) .  
Together with the fact that we have already expressed I[si(0) ( 1  < i < K )  in terms of 
n~,l(O), we can express IIB,i(0) ( 1  5 i S; I<) in terms of W O )  by using ( 5 1 ) ,  ( 5 2 )  and 
( 5 3 )  ( 4  < i < K )  recursively. Next we substitute S = 0 into ( 1 0 )  and (11) .  These equations 
respectively yield 

An&,l(o) = - C * ( A ) n B , l ( o )  + nB,2(0)  + nS,l(o) ( 5 4 )  
A n k i ( 0 )  = -n~,i(O) + ( 0 )  + H B , ~ + ~  ( 0 )  + iis,i(O), for 2 < i S; I< - 1.  ( 5 5 )  

Since we have n B , ; ( 0 )  ( 1  < i < in terms of n B , l ( 0 ) 7  we can easily express n&,;(O) ( 0  <. 
i  2 K - 1 )  in terms of T i g 1 ( 0 )  using ( 5 4 )  and ( 5 5 ) .  Differentiating ( 1 0 ) ,  ( 1 1 )  and ( 1 2 ) ,  and 
then substituting S = 0 yield 

From these results, we can express n & , K ( 0 )  in terms of I I s 1 ( O )  

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



A Queue with Vacation, Set-up, and Close-down Times 75 

4.5 Obtaining RB1(0) 
In the previous section we have IIv,.(0) (0 5 i 5 Ii'), IIC,,(O) (0 5 i 5 K), IIs,,(0) (1 5 i 5 
K ) ,  &,.(O) (1 5 i 5 I{), RB,~(o)  (l 5 i M) and q i ( 0 )  (1 5 i 5 K )  in terms of I I ~ , ~ ( o ) .  
From the normalization condition 

we obtain IIB1 (0). Hence, the system state probabilities immediately follow. 

5. Performance measures 
In this section, we focus on three important performance measures of the system from an 
application point of view. One is the loss probability of an arbitrary customer and the 
others are the set-up rate and the waiting time distribution of a customer which is accepted 
by the system. 
5.1 The loss probability 
We consider the probability Pioss that an arbitrary customer is lost because of blocking 
and express it in two ways. The first approach is based on the Poisson Arrivals See Time 
Averages (PASTA) property. Since our arrival process is Poissonian, the probability that 
an arbitrary customer is blocked equals the probability that the number of customers in the 
system is K at an arbitrary time. Therefore, Pioss is simply obtained as 

On the other hand, if we apply Little's law to the server (excluding the waiting room), we 
have 

Ii- 

A ( l  - P ~ ~ ~ ~ ) ( - B * ( ~ ) ( O ) )  = Prob[The server is busy] = E JIBi(0) (62) 

from which we have 

5.2 The set-up rate 
The set-up rate, yset-up is defined as the number of set-up periods per unit time, which is 
of interest from the SVCC-operation point of view. This is obtained as 

5.3 Waiting time distribution 
We derive the distribution of the waiting time. First we observe an arriving customer 
classified by the system state in which it arrives. We call an idle period as the period during 
which the system is neither closing-down, setting-up, taking a vacation nor serving. In the 
idle period, the arriving customer is served after a set-up period. On the other hand, the 
arriving customer is served immediately during close-down period. In a vacation period, 
the arriving customer is served after the vacation period ends and the all customers in the 
queue at the arriving point are served followed by a set-up period. In the set-up period, the 
arriving customer is served after the set-up period ends and the all customers in the queue 
at the arriving point are served. In the busy period, the arriving customer is served after 
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the service undertaking is complete and the all customers in the queue at the arriving point 
are served. From these observations, we obtain the LST of the waiting time of an arbitrary 
customer as follows. 

Differentiating (65) by s and substituting S = 0, we have the mean waiting time, E(W). 
This is, however, also obtained by Little's law 

where E(L) is the mean queue length obtained as 

and X' is the effective arriving rate given by 

6. Numerical results 
To illustrate how our analysis is numerically tractable, we show some numerical results . 

under the following scenario. 
0 B ( ~ ) = l - e - ~  
0 V(x) = 1 - e-x 

Timer v a l u e ,  T 

Figure 1: The mean waiting time 
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0.1 1 10 

Timer value, T 

Figure 2: The set-up rate 

T i m e r  value, T 

Figure 3: The loss probability 

We have plotted the mean waiting times in Figure 1, the set-up rates in Figure 2 and 
loss probabilities in Figure 3 as a function of timer value T for different offered loads p = 
A * (-B*(')(o)). In Figure 1, we observe that the mean waiting time gets longer for higher 
p regardless of T in general but that it behaves in a different way for p = 0,l. This comes 
from the fact in the following. The mean number of customers in the queue increases as 
p becomes high. A longer mean waiting time is then required for higher p. For p = 0.1, 
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however the arrival rate is so small that the probability that the close-down time of T ends 
with arrivals is almost zero. Thus, almost all customers need a set-up time and the mean 
waiting time becomes larger. 

Figure 2 shows that the set-up rate for higher p is larger than that for lower p except 
for p = 0.1. Here is an explanation. The probability of an arrival during a close-down 
time is larger for higher p. Therefore, the set-up rate decreases for higher p. However for 
p = 0.1, long idle periods decrease the set-up rate. From Figure 3 we see that the loss 
probability increases as p increases and the length of close-down time has a small influence 
on the behavior of the loss probability. 

7. The infinite capacity model 
In this section, we show that our equation (65) for a finite capacity system is consistent 
with the corresponding result for the infinite capacity system as K tends to infinity. We 
define Q+cio ( S )  as the LST of the waiting time of an arbitrary customer for finite capacity 
system in which K tends to infinity and W* ( S )  as that for infinite capacity system. 
7.1 Waiting time analysis for infinite capacity model 
Let I I ( z )  denote the distribution of the number of customers left at a service completion. 
Using the method of imbedded Markov chain (see Takagi [6]), we have 

We denote by a ( z )  the generating function of the number of customers present at the 
beginning of a busy period. This a ( z )  is obtained as 

( 2 )  = ( 1  - C* (A ) ) z  + C * ( A ) { V * ( A  - Az) - (1 - z ) V ( A ) } S * ( A  - Az).  

Using the equation above, we have 

" (4 - " 0  B* (A  - Az). H ( z )  = H o a ( z )  B *  ( A  - Az) - + 
z z 

Solving this equation, we obtain 

Here, IIo is determined by the normalization condition I I ( 1 )  = 1 ,  so that 

1 - A(-B*( ' ) (o))  
IIo = 

a(1) ( l )  

Under the FIFO discipline, the customers who arrive at the system while a customer stays 
in the system are nothing but those left behind when he leaves the system. The generating 
functions of the number of customers arriving at the system during the waiting time and 
the service time are respectively given by W&(\ - Az) and B*(\  - Az). Therefore, we have 
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Substituting S = A - Az, and solving for Wz(s),  we get 

A [ l  - a ( l  - S/\)} s(1 - A(-B*(')(o))) A [ l  - a(1 - S/\)]  
W X s )  = - 

s(a(l)  ( l ) )  s - A + \B*@) S(&) (l)) / G /  (3) (72) 

where w&/G/ i (~ )  is the LST of the waiting time of an arbitrary customer for the corre- 
sponding M/ G/ 1 system, without any vacation, set-up and close-down times. Equation (72) 
then shows a stochastic decomposition result as in [l, 5, 61. 
7.2 Limiting behavior of waiting time for our system as K -+ oo 

We introduce the generating functions 

, 01, ~ s ( z ,  5) 
and (ll), we have 
We define &(z , W z ,  0) and b ( z 7  S) similarly. From (4). ( 5 ) ,  (7). (S), (10) 

Substituting S = A - Az into the above equations, we have 

Using these results, we get 

M O ) ( l  - a(2)) z{B*(s) - B*(\ - Az)} 
G ( z , s )  = 

A-Az-s  B*(\ - \z\ - z 
We finally derive W k d s )  as follows 
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From the normalization condition, 

b 1 ( 0 )  is given by 

from which we have shown 
WK^(s )  = W^(s). 

Remarks 
Notice tha t  & , l ( ~ )  = no. Here is an  explanation. IIo is the probability that the 

number of customers left in the system is 0 when a customer leaves the system. Since 
we assume the queue size changes by unit jumps, this is consistent with the probability 
that  an arbitrary customer finds the number of customers in the system is 0. Recalling 
that  the arriving process is Poissonian, this probability equals the probability that the 
system is empty at  an arbitrary time (PASTA). On the other hand IIB,i(0) stands for 
the instance that  the system becomes empty and the mean length of the period that the 
system remains empty is given by 1/A. The system state is either closing-down, taking a 
vacation, or idle. Therefore, iI15,1 (0) also gives the probability that the system is empty 
at an arbitrary time. 
For non-vacation system (V = O), our model reduces to  that in Hassan and Atiquzza- 
man [3]. Our analysis developed here is exact, while the queueing analysis in [3] is an 
approximation by the M/G/ 1 and heuristic results. 
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