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Abstract A new stochastic process called block renewal process (or G(m) process) is proposed for mod- 
eling auto-correlated arrival processes of queueing systems. This process can be modeled easily by the 
observable marginal distribution and global auto-correlation index of auto-correlated arrival process. This 
new process is very simple and tractable, so it is good for both simulation and numerical computation. We 
also discuss how to obtain analytically the steady-state distribution of queue length of a G(2)/M/1 queue. 

1. Introduction 
Many traffic engineers and researchers are starting to pay much more attention to the 

importance of the auto-correlation of arrival processes in queueing systems (see [l], [2] and 
[3] for example). It is known that a stronger positive correlation results in a worse waiting 
time. Moreover, in telecommunication traffic engineering, one encounters various kinds of 
auto-correlated arrival processes. In particular, in a multimedia network, such as an ATM 
network, one must deal with many different types of arrival processes like data, voice, still 
images and moving images. All of them have different auto-correlation structures. Thus, 
one must consider good methods of modeling auto-correlated processes. 

Several methods have already been proposed. The best-known auto-correlated process 
in queueing problems is probably the Markov-Modulated Poisson Process (MMPP) [3]. 
This process is a special case of Markovian Arrival Process (MAP) [4] or more general 
semi-Markov processes. Using phase space, we can impose a correlation structure on these 
semi-Markov processes. By tracking transitions in the phase space, we can treat these 
processes as a Markov process, which is tractable through the Matrix-Geometric method 
[5]. However, we need some skill to make a good MMPP model given empirical data of 
arrival process 161. One of the biggest problems in building a good MMPP type model is 
that we need to deal with many parameters that usually have no physical meaning and are 
not observable. In old telephone traffic theory, the only parameter we have to observe is the 
mean traffic volume (or erlang), so modeling traffic processes and designing the network are 
relatively easy. 

Other met hods for modeling auto-correlated processes have recently appeared in the 
literatures. Jagerman and Melamed [7] proposed the Transform Expanded Sample (TES) 
method. In this method, we first construct a discrete-time stochastic process, called a back- 
ground process, which has uniformly-distributed marginals and tunable correlated structure. 
The background process is then transformed to have the exact target marginal distribution 
and approximate target autocorrelation function. TES queueing process are difficult to 
solve analytically, but recently Melamed et al. reported a numerical solution for quantized 
TES/PH/l [8]. 
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Both MMPP modeling and TES modeling require a complicated procedure for obtaining 
a model from observed data of the arrival process. Here, we propose a relatively simple 
auto-correlated stochastic process. We can construct an auto-correlated arrival process that 
matches observed parameters wit h import ant meaning in the context of queueing systems. 
This process has a renewal structure, so it is relatively easy to get analytical results by 
using the Matrix-Geometric method. Indeed, for the simplest case, we do not have to use 
the Matrix-Geometric method a t  all to get numerical results (see Section 4). 

This paper is organized as follows. In section 2, we define the so-called G(m) and G(m, a) 
classes of processes, which are designed to approximate auto-correlated processes. In section 
3 we propose a procedure for building a G(m, a) process from empirical data. We then solve 
the queueing problem of a single-server queue in section 4. In section 5 ,  we examine some 
examples of the G(2) process. In section 6 we treat the global auto-correlation behavior of 
MAP, which will be used in section 7.  In section 7 ,  we discuss the accuracy of our method 
through some numerical examples. 

2. The G o  and G(m, a) Processes 
Let X G 2  . . be a sequence of random variables (possibly auto-correlated). We say 

that the process X17 X2, is a block renewal process with a renewal length of m, or that 

Xi, X2, is a G(m) process for short, when the sequence of m-dimensional random vectors 

(Xmn+i, Xmn+2, , Xm(n+l))n=o,l,2 ,... for m = l ,  2, - - - is i.i.d. Note that in this notation, 
the term G1 (commonly used for a renewal process in queueing theory) is replaced by G(1). 
The G(m) process is a natural extension of ordinary renewal processes and we can impose 
any type of correlation within renewal cycles. 

In the sequel, we define a process G(m, a)  by restricting the correlation structure of the 
G(m)  process. First however, we prove the next lemma concerning the probability mixtures 
of auto-correlated random vectors. 

Lemma 1. Let X i , Y  and Z be correlated random variables that have the same marginal 
mean E [ X }  and variance V a r [ X ] ,  Let 

where p(A7 B )  = { E [ A B ]  - E [A] E [ B ] } / { v ~ ~ [ A ] v ~ ~ [ B ] } ~ / ~  is the correlation coefficient of 
random variable A and B. 

Define a random variable X2 b y  

Y with probability p x2 = Z with  roba ability (1 - p) 

then we have 
?(X^ X2) = PP, + (1 - P)PZ. 

Proof. By the definition of X2, we have 
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Theorem 1. Let Xl and X2 be random variables with identical distributions. Suppose 
that Xi = X2 with probability p, and Xi and X2 are independent and identically distributed 
with probability 1 - p. Then 

p(X^X^) = P. (2-4) 

Proof. Substitute Y and Z in Lemma 1 as follows: set Y = Xi and Z and Xi be i.i.d. 
Thus, 

pi = p(Xl, 2)  = 0 and p, = p(X1, Y) = 1. 

By (2-3) we have 
p ( X l , X 2 ) = p - l + ( l - ~ ) - o = ~ = ~ .  

Remark. This theorem shows that we can construct a pair of random variables having 
both some prescribed marginal distribution and some prescribed positive correlation coef- 
ficient p. Furthermore, we can construct a pair of random variables that has a negative 
correlation coefficient by using the following random variables. 

(See Tchen [l21 for a detailed description of this type of random variables.) 

Let G(x) be any given distribution. Let the m-dimensional random vector X = (Xl, - - - , Xm) 
have the following correlation structure: (A) with probability a, all the m random variables 
in X are identical and distributed as G(x), and (B) with probability l -a, all the m random 
variables in X are i.i.d. distributed as G(x). 

The m-dimensional random vector has the following properties; 
(1) The Xi, - , Xm have an identical marginal distribution, 

(2) The correlation coefficients of (XI, , Xm) are 

Let {X W}y., be a sequence of i.i.d. random vectors, where each x ( ~ )  = (X?, . - , X?) 
is constructed as X above. Construct discrete-time stochastic process X = {Xi}^-, such 
that Xi = X'), provided i = (A:  - l ) m  + j .  In other words, we construct X out of the 
vector "blocks", xW. Clearly, this constitutes a subclass of G(m) processes, which we call 
a G(m, a) process. The merit of G(m,a )  processes is the ability to endow it with any 
prescribed marginal distribution. Moreover, by varying the pair of values (m, a ) ,  we can 
tune its auto-correlation structure. 

Figure 1 shows an example of a sample path of a G(m, a )  process with uniform marginal 
distribution on the interval [0,10], m = 5, and a = 0.5. 

Next, we define the index of global auto-correlation, ,B, as 

provided the sum exists. The index of global auto-correlation is a global measure of the 
"amount" of the auto-correlation of a stochastic process; it plays an important role in the 
subsequent queueing processes. 
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Figure 1. A sample path of a G(m, a) process 

By extending the ordinary heavy traffic argument to the G(m) process, we can easily 
find that if two processes have identical marginal distributions and the same index of global 
auto-correlation, they are asymptotically equivalent in single-server queues. Also, the index 
of global auto-correlation plays an important role for calculating the tail probability of buffer 
content of Gaussian-type input processes [14]. 

The following theorem about the index of global auto-correlation of the G(m, a) process 
is useful. 

Theorem 2. T h e  index of global auto-correlation {3 of a n  equilibrium G(m, a) process is  

Proof. Since we assume an equilibrium G(m, a} process, the selection of any of the m 
interarrival times is equiprobable. Thus, 

since correlations across blocks vanish by construction. 

3. Procedure for Modeling the Auto-correlated Process 
In this section we summarize the procedure for constructing a G(m, a )  model from 

empirical data (in our case, interarrival times). Assume we wish to construct a stochastic 
sequence Xi, -Xa, - m - that models a target stochastic sequence Yl, Y2,. . with its empirical 
data (vl, - - , yN). Note that the marginal distribution and the parameters (m, a) completely 
determine a G(m, a) process Xi, X2, - -. 
Model Construction Procedure: 
(1) Compute an empirical marginal distribution G(x) from the path (yl, . . - , yN) (typically, 

a histogram). 
(2) Compute an empirical index of global auto-correlation from the path (yl, - - , yN). 
(3) Calculate the model's renewal length, m, as the smallest integer greater than 2/? - 1, i.e. 
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(4) Compute the corresponding a by 

(5) The requisite model of the process Yl, Y2, is given by the G(m, a) process with 
marginal distribution G(x). 

From (3-2) and Theorem 2, we can easily find that this G(m, a) process has the same 
index of global auto-correlation f3 as its empirical counterpart. 

Remark. We do not have to select m as the smallest integer greater than 20 - 1. We can 
make the renewal length longer by using smaller a, but for computational and simulation 
efficiency, it is preferable to use the smallest possible m. 

Compared with the moment-matching method of MMPP, our procedure emphasizes 
matching the marginal distribution and the global behavior of the auto-correlation structure, 
which can be captured by the index of global auto-correlation. We believe that this results 
in a better approximation. The test of accuracy using real-life data is under further study. 
Also, compared with TES, the above procedure has the advantage of simplicity. This makes 
it easy to perform both simulation and analytical computation. 

Taking m identical copies of interarrival time with probability a often results in a G(m, a) 
process whose simulated sample paths look different from the empirical sample path. How- 
ever, there exists real life processes for which G(m, a) is a good model, notably the output 
cell streams from leacky bucket, which is commonly used in ATM for traffic shaping. Leacky 
bucket has constant interarrival time and their multiplexed streams often resemble the sam- 
ple path of a G(m, a) process. 

4. The G(2)/M/1 queue 
Since G(m) processes (including the G(m, a )  process) have a special renewal structure, 

we can solve analytically the simplest G(2)/M/1 queue by using an embedded Markov 
process. 

Consider a G(2)/M/1 queue with a G(2) arrival process XI, X2, and iid exponential 
service times with mean p l .  Let G(x, y) = P{Xl <: x,X2 <: y} be the joint distribution 
of (Xl, X2), which completely determines the G(2) process. We assume the 0-th customer 

i 

arrived at time 0. Let Ti = Xn be the arrival epoch of the i-th customer and L, be the 
n= 1 

number of customers in the system at Tr (the number of customers seen by arrivals). The 
process forms a Markov process with transition matrix 

Here, Ak is the probability that k customers departed during [T2m, T2im+1)) and more than 
two customers remained in the system. Bk is the probability that k customers departed 
during [TZm, T2im+l)) and one customer remained in the system. Ck is the probability that 
k customers departed during [T2m, T2(m+1)] and no customers remained in the system. The 
explicit form of Ak is 
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Letting Pn = lim P{L2rn = n}, we get the steady-state equations 
m+cc 

Define the generating function of Pn by 

Then, from (4-31, we have 

cc cc k-l  

where P ( S ,  t )  is the LST of the joint distribution of G(x, y). A usual manipulation yields, 

cc k-l  

We now proceed to use an argument similar to the one for the bulk arrival queue [g, 101. 

Lemma 2. If p{E[X1] + E[X2]) > 2, then inside the unit disc there are two roots) 01 and 
0 2 ~  of the equation 

o2 = G*(p(l - o ) , p ( l  - 0)). (4-8) 

Moerover, one rootl 01, is positive real and the other, 02) is negative real. 

Remark. The condition 

p{E[X11+ E[X211> 2 

is equivalent to the traffic intensity less than l. 

Proof. Let f ( z )  = -z2 and g(z) = G*(p(l - z), p(1- z)). From the definition of G(-) ,  we 

On the circle {lzl = l - - E ) ,  we have 

Thus, we have 
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Hence, 
lg(z)l< lf(z)l on these t  { l z l - I -&}  (4- l 2) 

for some small positive E. 

Using Rouche's theorem, we know that f (z) = -z2 and f (z) + g(z) = -z2 + G*(p(l - 
z), p(1 - z)) have the same number of zeros inside {lzl = l - E } .  Thus, equation (4-8) has 
two roots. 

On the other hand, since g(0) = G*(p, p) > 0 and g(z) is a continuous function, there 
should be at least one intersection of y = z2 and y = G*(p(l - z), p(1 - z)) in the region 
{ ( z ,  y) E R2 : z > 0, y > 0). Hence, one root, 01, of (4-8) must be positive real. Similarly, 
y = z2 and y = G*(p(l - z), p(1 - z)) intersects in the region {(z, y) E R2 : z < 0, y > 01, 
whence o2 is negative real. 

Theorem 3. Let Pn be the steady-state probability in a G(2) /M/l  queue that the number 
of customers seen b y  an even-numbered customer is n, i.e., 

Pn = lim P{L2m = n} ,  
m+CO 

where L2m is the number of customers seen b y  the 2m-th customer. 
CO 

If p{EIXl] + E[X2]} > 2, then the generating function of {Pn}, P*(z) = pkzk, can 
k=O 

be explicitly written as 

P*(z) = 
Cl 2 + c2 (4- l 3) 

(l - o1z)(1 - 0 2 2 )  ' 
where 01 and 0 2  are the solutions of the equation (4-81, and 

Proof. Since the denominator of (4-7) has only two zeros, l/ol and 1/02, outside the 
unit disc, 

C(z)(l  - o1z)(1 - 0 2 2 )  
A(z) = 

l - z2G*(p(l - z-l), p(1 - z-l)) 

is regular for all z, where 

CO k-l 

It is easy to see that 
4 2 )  lim - = 0. 

lzl+w z2 
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Hence we can write A(z) = Clz + C2 for some constants Cl 

Since X Pn = l, 

W. WO@ 

and C2. Consequently, we have 

(4- l 7) 

From the asympktotic behavior of A(z) = Clz + C2, we have 

4-4 ( l  - o1z)(1 - 02z)C(z)/z 
Cl = lim - = lim 

IZI+W z IZI+CC l - z2G*('(l - z-l), '(1 - 2-1)) 

Since Bk+l = P{(k + l) Poisson events occur}+ P{at least (k + 2) Poisson events occur but 
only ( k  + l) events are effective departures}, we have 

Hence, 

m 1-2 

We can calculate X *Pk by using the following Lemma concerning the product of 

generating functions. 

Lernrna 3. (See Vich [Ill for proof.) Let F(z )  = X alz-' and G(z) = X blz-l. Then the 
l = O  

generating function of the product is 

where the integral path c can be chosen to have all poles of F(z)  inside c and all poles o f  
G(z/t)  outside c .  

1-2 

Setting al = X Pk and bl = I l l !  in Lemma 3,  we have 
k=O 

z2 P* (z) 
F(zd l )  = - - 

z2(C1z + (72) 
l - z (l - z)( l  - o1z)(1 - 02z) 

and 
G(z-l) = ez. 

Hence, 
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By the residue theorem and (4-17), we can deduce 

Cl H ( z )  = -- + (Cl + C2)e1iZ + (Cl  + ~ ~ 0 ~ ) e ~ ~ / ~  (Cl + C202)e02/Z + 
0 1 0 2  ( l  - 01)(1 - 0 2 )  0 1  ( 0 1  - 1)(01 - f f 2 )  o2 (02 - 1)(02 - 0 1 )  

W 1-2 

Since X *Pk = H ( ( p x ) - l ) ,  we have 

Hence the constants Cl and C2 are determined by the following two linear equations: 

which can be explicitly solved, yielding (4-14) and (4-15). 

Theorem 4. The mean queue length seen by an odd-numbered customer in the G(2)/M/I 
queue is given by 

Proof. Let pm = P{L2n = m} and qm = P{L2n+l = m} .  Conditioning on the interarrival 
times, for n 2 l we have 

CO ( ~ x ) ~ + l - ~  p{L2k+l = n 1 ( x l , x 2 )  = ( x , Y ) }  = -W pm = E CO -e-px ( P X ) ~  
Pm+n-1. 

m=n- l (m  + 1 - n ) !  m=o m! 

Hence, qn can be obtained as 

Let Q*(z)  be the generating function of qm . The mean queue length seen by odd-numbered 
customers can be calculated by 
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We will use complex analysis to get an explicit form of the third term. Define the sequences 
{am}  and {bm} by 

m- l 

am = x ( n + l  - m ) p n ,  and bm = l /m! .  
n=O 

Using ordinary generating function arguments, we have 

m m-1 z2 P * Q )  

and 
CO m-l 

x ( 1 - m )  x p n z m = -  
z2 P * ( z )  - z2 P*I(z)  

m=o n=o ( l  - z ) ~  1 - 2  
Letting A ( z )  be the generating function of am,  and using (4-131, we have 

Now letting 

and 

in Lemma 3 ,  the ge nerating function of the product of am and bm b ecomes 

where [l = l ,  [2 = 01 and f 3  = 0 2 .  Calculating the residue value at each pole of the 
denominator, we obtain 

Integrating both sides with respect to G ( d x ,  d y )  yields 

l l 
the forth term of (4-25) = - + - - c2 

l - 0 1  l - 0 2  ( l  - 01)(1 - 0 2 )  
- ~Jwll 

We next propose a numerical procedure for finding roots cl and 02. We consider the 
following iteration: 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Block Renewal Processes 

with ( 7 ) , ( 7 ~  E [-l, 1). Then we can expect 

(n) 
(71 = lim 0" and 172 = lirn o2 . 

n+oo nÃ‘KX 
(4-3 0) 

Remark. Alternatively, the G(m)/M/l queue can be solved by using the Matrix-Geometric 
method analogously to the bulk arrival queue (see [5] section 1.5). We believe that the above 
procedure is efficient for m = 2, but for higher m, we recommend using Matrix-Geometric 
methods for simplicity. 

5. Examples of G(2)/M/1 queue 
In this section we exhibit some examples and relate them to existing models. 

Example 1. (GI/M/l queue) In this case, the LST of the joint distribution of interarrival 
time is just the product, i.e., 

G* ( S ,  t )  = G* (S) G* (t ) , (5-1) 

where G*(s) is the LST of the marginal interarrival time distribution. The roots 01 and (72 

are determined by 

01 = G*(p(l - 01)) and < ~ i  = -G*(p(l - 02)), (5-2) 

and, solving (4-23), yields 

Cl=-(1-<7-l)o-2 and C2=1-01 .  (5-3) 

Substituting (5-3) into (4-13), we have 

This coincides with the solution of ordinary GI/M/l queues. 

Example 2. (Bulk arrival G ^ / M / ~  queue) In this case, the LST of the joint distribution 
of interarrival times is independent of the first argument, i.e. 

and 
C l = O  and C2=(1-(71)(l-0-2).  

Substituting (5-6) into (4-13), we have 

which coincides with the solution of ordinary bulk-arrival (?^/M/ 1 queues. 

6. T h e  Marginal Distribution and  Index of Global Auto-correlation of M A P  
In this section we discuss the marginal distribution and the index of global auto-correlation, 

/?, of Markovian Arrival Process (MAP) (see [3] for details). Consider a MAP and let Do 
and DI be the transition rate matrix of phases without arrival and with arrival. Then, the 
LST of marginal distibution of interarrival time has the form 
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where ro is the stationary probability vector of the phase at arrival. 
Let Q(t) be the semi-Markov kernel of MAP, that is, the ( i ,  ̂-element of matrix Q(t) is 

the probability that the first transition takes place by time t and jumps to phase j, given 
phase i .  Then 

t 
Q(t) = eDoUduDl, (6-2) 

and 
Q(co) = -D;'Di 

The LST of Q(t) is defined by 

and its derivatives are 
Q * ' ( ~ )  = -D?D', 

The auto-covariance of interarrival time sequence (Xi)i=i,2,... can be computed for m > 2 

where TT is the stationary distribution of the phase at arrival epochs. For m > 3, we can 
rewrite (6-6) as 

and for m = 2, 

Moreover, we have 

V a r [ X ]  = ~ " ( 0 ) e  - ( v ~ " ( 0 ) e ) ~ .  

Hence, Q can be calculated as 

7. Example of an Approximation of MMPP(2) 
Consider a two-state MMPP (MMPP(2)) as an example of an auto-correlated arrival 

process. The transition rate matrix without arrival, Do, and with arrival, D', can be 
writ ten respectively as 

and 
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Recalling results of the MMPP (2)/M/1 queue, the infinitesimal generator of the queue 
length process is 

B1 A1 A0 

where 

and 

Let TT = (7rl, T T ~ ,  m -) = ((4 T?), (4, G), - W )  be the stationary probability vector of Q, i.e. 

Then by the usual Matrix Geometric argument (see Neuts[4]), there exists a rate matrix R 
such that 

nnR = TTn- l i  

which satisfies the equation 
R2A2 + RAi + A. = 0. 

The stationary probability vector of phases, v, is 

whence the stationary vector of the queue length of MMPP(2)/M/1 can be written as 

0 1 2 3 4 5 

arrival rate \ l  

Figure 2. One arrival rate and mean queue length 
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Moreover, the mean queue length is given by 

E[Ll = vR(1- R)-'e, 

where e = 
1 
1 . Note that R can be obtained by numerical iteration. 

. , 

Next we examine the efficacy of our approximation method when applied to known 
target models. Let MMPP(2) be the target process, and follow the procedure described in 
section 3 to construct an appropriate G(m, a) model. The following figures compare the 
mean queue lengh of various MMPP(2)/M/ls and the corresponding G(m, a ) /M/ l .  

Figure 3. Phase transition rates and mean queue length 

5 
01 c 
W - 
W 
3 
o} 
3 
0" 
K 
(0 

E 

Figure 4. One of the phase transition rates and mean queue length 

Figure 2 depicts the mean queue length of both processes for various arrival rates of phase 
1, Al. Obviously for larger AI, the mean queue length of MMPP(2)/M/l increases since 
the overall arrival rate becomes larger. This figure shows that the corresponding G(m, a) 
approximation tracks this trend perfectly. In Figure 3, we set the phase transition rates 
ro and 7-1 to a common value r.  As r increases, the correlation between arrivals becomes 
smaller, so the mean queue length of MMPP(2)/M/l becomes shorter. We can see that 
the G(m, (^-approximation tracks this trend. In Figure 4, we increase the value of ro, 
which affects on the mean queue length in MMPP(2)/M/l non-intuitively. For larger ro, 
the overall arrival rate increases but the correlation between arrivals decreases. In this case, 
the queue length of MMPP(2)/M/l becomes larger. Again, we see that the G(m, a ) / M / l  
queue approximates well the MMPP(2)/M/l queue. 
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