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Abstract This paper considers the loss probability of the multiplexing system with the large size of 
the buffer and the large number of homogeneous ON-OFF sources. We model the multiplexing system 
as the fluid queueing system with the regulated input fluid traffic. Each traffic generated by an ON-OFF 
source (original traffic) is regulated by the leaky bucket and aggregated output traffic (regulated traffic) 
flows into the buffer of the multiplexer. Using the CDE approximat,ion method, which consists of the loss 
probability for the bufferless system and that for the system with the large buffer, we explicitly derive the 
approximated probability of the buffer overflow for the multiplexing system. Our result includes the two 
important parameters of the leaky bucket; the size of a token pool and the token generation rate. Hence, 
our result provides the significant indication for designing the input source regulator with the leaky bucket. 

1. Introduction 
In the ATM-based Broadband ISDN (B-ISDN), it is expected that the different classes of 

traffic such as voice, video and data are multiplexed and carried to their destinations keeping 
their quality of service (QoS) satisfied the required level. There has been a number of works 
for the ATM-based B-ISDN from the many points of view such as the switching architecture, 
policing strategies, the performance of the ATM switch, the behavior of network system 
which consists of ATM switches, and so on. Among those researches, the theory of the 
effective bandwidth and its applications of the communication system have been recognized 
as powerful tools for the performance analysis of the ATM-based B-ISDN. 

One of applications of the effective bandwidth is to approximate the probability of the 
buffer overflow for the multiplexing system. Concerning the approximation for the buffer 
overflow probability of the multiplexing system, Elwalid et  al. [5] has proposed the Chernoff- 
dominant eigenvalue (CDE) method. The CDE method consists of two parts: one is ob- 
tained from the Chernoff's theorem and the other is the dominant eigenvalue of the mul- 
tiplexing system, which is derived in the standard effective bandwidth argument. It has 
been suggested that the loss probability of the bufferless system is well approximated by the 
parameter obtained by Chernoff's theorem, while the loss probability of the system with the 
large buffer can be approximated by the dominant eigenvalue associated with the Markovian 
input traffic source. [5] also showed that the approximated probability of the buffer overflow 
is well matched with the simulation result, where the data of the video teleconferencing is 
modeled as an input traffic. 

[g] considered the effective bandwidth of general Markovian traffic sources and studied 
the optimization problem of allocating token generation rates among the heterogeneous 
sources. They derived the explicit formula of the asymptotic log moment generating function 
(ALMGF) for the ON-OFF source, where ON and OFF periods are exponentially distributed 
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and the fluid traffic is generated constantly a t  ON time. 
In this paper, we consider the loss probability of the multiplexing system, where the 

original input is an ON-OFF source and the generated traffic is regulated by leaky bucket. 
The leaky bucket has two types of buffers; the data buffer and the token pool. As the token 
pool is getting small, the delays in the data buffer becomes large while the output stream 
becomes smooth. From this property, the leaky bucket has been considered that it will be 

as a policing device in the ATM network[6]. 
We model the considered multiplexing system as a fluid queueing one. We suppose that 

the regulator has the infinite buffer and finite token pool, and that the token is generated at  
rate. Note that our regulator model is the special case analyzed in [6]. We approx- 

e loss probability of the multiplexing system with the large number of sources and 
the large buffer using the CDE method. Supposing that ON and OFF periods are exponen- 

uted, we can easily obtain the steady state probability for the output process 
lator with leaky bucket. Using this probability, we derive the asymptotic loss 

probability of the bufferless multiplexing system by the Chernoff's theorem. On the other 
hand, from the standard argument of the effective bandwidth, we also approximate the 
loss probability of the multiplexing system with the large buffer using the explicit ALMGF 

a number of studies for the theory of the effective bandwidth and its appli- 
cations (see [l, 2, 7,  81). In particular, the fluid model with the access regulator has been 
analyzed in [G ] .  In [7], the fluid queueing model with general Markovian traffic sources has 
been studied. The important element of the effective bandwidth is the ALMGF. [%l showed 

GF can be computed if the considered process is a Markov regenerative pro- 
ing the fluid queueing theory, [l01 studied the first passage time in a fluid 

flow model where the input and output rates are governed by a finite state continuous time 
Markov chain. In particular, the Laplace transform of the distribution of the first passage 
time for an ON-OFF source has been derived. 

The theory of the effective bandwidth is based on the large deviation theory. [4] has 
derived the asymptotic decay rate of the waiting time distribution under the general condi- 
tions where the stationarity of the input-output process and a Gartner-Ellis condition are 
supposed. [3] has analyzed the queueing behavior with the large number of input sources. 
The authors derived the approximation of the loss probability using the scaling technique 
and applied the results to the queueing system with heterogeneous inputs. [l21 has pre- 
sented the fundamentals of the large deviation theory for applying to the computer and 
communication systems. For the more detailed theories and its applications, in particular 
communication systems, readers are referred to [11]. 

The paper is organized as follows. In Section 2, we describe our mathematical model in 
present the outline of the CDE method in Section 3. In Section 4, we analyze 

obability for the bufferless system. In Section 5, we summarize the derivation 
of the ALMGF of the output from the regulator and analyze the loss probability for the 

rge buffer. Finally, we derive the expression of the loss probability for 
how some numerical examples in Section 6. 

2. Fluid Queueing Model 
We consider the fluid queueing system with multiple sources where each source is regu- 

lated by the leaky bucket scheme (Fig.l). 
The input source is modeled as an ON-OFF source where ON and OFF periods are 

exponentially distributed with rates a and Q, respectively. The source generates traffic at  
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Figure 1: Fluid Model for Multiplexing System with Regulated Input Sources 

rate A when the state of the source is ON, and no traffic when OFF. We refer the fluid 
traffic generated by the ON-OFF source to the original traffic. We assume that A < m .  

The original traffic is regulated by the regulator called the leaky bucket. The regulator 
has an infinite data buffer and the token pool whose size is M. Tokens arrive a t  the token 
pool as fluid with the constant rate r. Throughout the paper, we suppose that r < A. 
Arriving tokens which find the token pool full are lost. Arriving original traffic is sent to 
the multiplexer with rate A until the token pool becomes empty. Note that the contents of 
the token pool decreases with rate A - r. When the token pool becomes empty, the original 
traffic is sent to  the multiplexer with the token generating rate r. We refer the output traffic 
from the regulator to the regulated traffic. 

We assume that there are K independent and identical sources in our model. The 
regulated traffic from K sources is aggregated into the buffer of the multiplexer, whose size 
is B, and then transmitted with the constant rate C .  Let b and c denote the buffer capacity 
and the transmission rate per source, respectively, i.e., B = Kb and C = KC. 
Remark. [6] analyzed the regulator model with a finite data buffer and a finite token pool. 
Since we are interested in the behavior of the multiplexer's buffer with the regulated traffic, 
we don't need to consider the regulator model with a finite data buffer. 

3. CDE Method 
In this section, we restate the CDE method proposed in [5]. As for the precise proofs 

for the results of this section, readers are referred to section 2 and appendix in [5]. 
There are K identical homogeneous fluid sources in our network model. We also define 

B(t)  as the buffer content of the multiplexer a t  time t. 
Then, it has been proved in [5] that if the process of the output rate of the regulator is 

Markovian and time-reversible, there exist easily calculated positive constants, Cl and C2, 
such that for every b > 0, 

1 
lim -logPr(B(oo) > Kb) < -Ci -C2b. 

K-^m K 

The lower bound of the left hand side of (3.1) is given by 

lim Ã‘logPr(B(oo > Kb) > -C3-Czb, b >  bo, 
K-00 K 
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where bo and Cy are positive constants. Note that (3.1) and (3.2) don't depend on t ,  i.e., 
those are the equilibrium estimates. 

Now we consider the following estimate of the stationary overflow probability of a buffer 
of size B derived from an infinite buffer analysis 

(3.3) G(B)  = Pr(B(oo) B). 

For the output rate processes which is Markovian but not time-reversible, [5] has proposed 
the following approximation; 

(3.4) G(B)  M L$", 
where L = e K C 1  z = -C2 and w means the simple approximation. The approximation 
in (3.4) is called the CDE method. It  has been shown that L is the loss probability for 
bufferless multiplexing, which is estimated from the Chernoff's theorem, and that  z is the 
dominant eigenvalue in the buffered multiplexer, which is known to  determine the large 
buffer behavior in the logarithmic scale. In the same context of the logarithmic scale, [2] 
has given z in terms of the effective bandwidth. Let h(0) denote the ALMGF of the input 
traffic and 9' be the solution of h($)/ff = C, where the value h(0)/0 is called the effective 
bandwidth. In this context, z is given by -P. 

Specifically, if b --+ 0 in the upper bound (3.1), we have 

1 
lim lim -logPr(B(oo) 2 Kb) = -Cl. 
610 K+oo K 

The left hand side (LHS) of (3.5) can be obtained from the Chernoff's theorem. On the other 
hand, the standard arguments for Markovian traffic sources show that  there is a positive 
constant C2 such that ,  for each fixed K 

1 
lim - logPr(B(oo) 2 Kb) = -Ca. 
b-+m Kb 

The ALMGF plays an important role when we estimate the LHS of (3.6). 
In the following two sections, L and z (i.e., 0*) in (3.4) are separately considered. 

Remark. In our model, the output rate process of the regulator is Markovian but not 
time-reversible. Hence (3.1) does not hold for our case. However, the numerical results in 
Section 6 show that  the CDE method (3.4) gives the upper bound in our model. 

4. Approximation of Loss Probability for Bufferless System 
In this section, we consider the first part of the CDE method, the loss probability of the 

bufferless system. First, we analyze the stationary distribution of the virtual buffer process 
of the regulator. Then, we obtain the loss probability of the bufferless system using the 
Chernoff 'S theorem. 

4.1. Stationary Distributions of Fluid Source with Leaky Bucket 
In this subsection, we analyze the steady state analysis of the fluid queueing system with 

a leaky bucket whose input is an ON-OFF source [6, 71. 
The original traffic is the single Markov modulated fluid source with state space {O, l} 

and infinitesimal generator Q, where 0 and 1 are corresponding to O F F  and ON, respectively. 
Let A denote the 2 X 2 matrix whose diagonal elements represent the arrival rates. Then, 
we obtain 
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Figure 2: Sample Path of W(t) 

Let J ( t )  denote the state of the fluid source at time t. The source generates fluid traffic at 
the constant rate A if J ( t )  = 1 and no traffic if J ( t )  = 0. 

Let TT denote the stationary state distribution of the ON-OFF source. Then, TT satisfies 
the following equations 

TTQ=O,  T e =  l, 

where e = (1, I ) ~ .  We obtain 

Let X(t)  and Y (t) denote the contents of the data buffer and the token pool at time t, 
respectively. We define the virtual buffer content process W(t) as 

(4.1) W (t) d ( t )  - Y (t) + M. 

Note that X(t)  and Y (t) are known from the value of W (t). Fig.2 shows the typical sample 
path of W(t). W(t) increases at rate A - r when the source is ON. On the other hand, when 
the source is OFF, W(t) decreases at rate r if W(t) > 0, or stays constant at 0 if W(t) = 0. 

We assume that the limiting distribution of (W (t), J(t)) exits, and define 

-,(X) = lim Pr(J( t )  = i, W(t) <; X), i = 0, l, X 2 0. 
t+m 

Then ~ ( x )  = (7ro (X),  -7ri (X)) satisfies the following differential equation 

where F = diag(-r, A - r). The ith diagonal element of F is the rate of the change of W(t) 
when the source state is i. F is called the drift matrix [7]. 

It is known that the limiting distribution of W(t) exists if TiTe < 0, that is, 

If we define the traffic intensity p as 
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(4.3) means p < 1. 
To solve the equation (4.2), we apply the method of the spectral expansion [6, 7, 101. We 

try v ( x )  = exp(r]x)(b where 77 is a scalar and (b is a two dimensional row vector. Substituting 
the value of ~ ( x )  into (4.2) yields 

and hence we obtain 

(4.5) W - Q) = 0- 

A non-trivial vector (b satisfying equation (4.5) exists if det(7T - Q) = 0. Therefore we 
obtain 

Above values are known as the spectrum of the fluid flow model. Let v* denote the non-zero 
value of 7. The corresponding (b with r f  is given by 

It can be shown that  the general solution t o  (4.2) is given by 

Since A > r ,  the token pool cannot be full when the source is ON and hence ~ ~ ( 0 )  = 0. 
Using this condition, a in (4.6) is given by 

Thus, we obtain the following explicit expressions 

1 - exp 
r (A - r )  

Using the above equations, the probability distribution of the virtual buffer contents in 
equilibrium is given by 

4.2. Loss Probability of Bufferless System 
In this subsection, we consider the loss probability of the bufferless system using the 

Chernoff 'S theorem [l 1, 121. More concretely, we consider the multiplexing system where 
the input fluid is the regulated traffic from K i.i.d. sources, the trunk capacity is C, and 
there is no buffer capacity in the system. We use c denote the trunk capacity per source, 
i.e., C = KC. 
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First, we consider the rate process of the regulated traffic. Let R(t) denote the rate of 
the regulated traffic at t. Then, R(t) is given by 

We assume that the following limiting distribution exists 

WO = lim Pr(J(t)  = 0, W(t) < M\ 
t+CG 

wl = lim Pr(J(t)  = 1, W(t) < M), 
t+m 

W = lim Pr(W(t) > M). 
t+m 

Using ri(x), we obtain wi's as 

Now we consider the i.i.d. random variables xi, , XK E {0, A,  r}, and assume that 
those have the common distribution {wi; i = 0,1,2}, that is, X i  takes the value 0 w.p. WO, A 
w.p. wl and r w.p. w2. From the assumption that r < A < oo, the mean E[xd exists. We 
define the following Legendre transform 

(4.10) Â£(c = sup {0c - log E (eexl)} . 
e 

In our case, Â£(c is given by 

Â£(C = sup {OC - iog(wo + wleM + w2ere)}. 
6 

Note that Â£(c is nonnegative and convex. (For more details, see [2, 11, 121.) We consider 
the supremum of the right hand side (RHS) of (4.11). We define 

Differentiating g(0) with respect to 0 yields 

From the numerator of (4.13), if c < A, there exists a point 6* such that 

and that g(O*) takes the maximum value at that point. If c > A, then Â£(c = oo. Assuming 
c < A, we obtain 
(4.14) Â£(c = CO* - log(wo + w1eM* + w2er0*). 

Then, from the Chernoff's Theorem, we obtain the loss probability as 
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where o(K) satisfies 
o(K)  lim - = 0. 

K400 K 
Hence, we obtain the L part of the CDE method as 

Remark. If M -+ oo in (4.9), we obtain 

that  is, the regulated traffic is becoming the same as the original traffic. In this case, xi 
takes 0 w.p. a/(&+ 0) and A w.p. f t / (a + p) ,  and hence, xi's become i.i.d. Bernoulli random 
variables. This case has been treated in [l21 as the elementary example of the large deviation 
theory. 

5. Approximation of Loss Probability of Large Buffer System 
In this section, we consider the second part of the CDE method, the loss probability of 

the system with the large buffer. First, we summarize the theory of the effective bandwidth 
and the probability of the buffer overflow. Second, we show the result of the ALMGF for 
the system where the original traffic process is a Markov regenerative process, which is 
developed by [8]. Then, we present the explicit formula of the ALMGF for the regulated 
traffic, which is derived in [g]. Finally, we derive the probability of the buffer overflow using 
those results. 

Suppose that  the trunk capacity is c. Let A(t) denote the total amount of the regulated 
traffic during [O, t]. We define the ALMGF h(6) as 

1 h(Ã§ = lirn - log E [eOA(t) ] .  
t-cc t 

We are interested in the limiting tail distribution of the buffer process B(t) .  It  has been 
shown that  this probability is such that  

(5.2) P r ( B ( m )  2 b) epO* ', as b -+ oo, 

where f (X) g(x) means that f (x)lg(x)  -+ 1 as X -+ m .  In (5.2)6* is given by the solution 
of h(W0 = c. As for the rigorous proofs and the further discussions, readers are referred to  

[2, 3, 4, 111- 
The function 

(5.3) 

is called the effective bandwidth function of the arrival process subject to  the condition that  
the tail distribution of the buffer contents has the decay rate 0. 

5.1. ALMGF for Output of Regulator 
[8] showed that  the ALMGF can be computed if the considered process is a Markov 

regenerative process. In [8], the ALMGF of ON-OFF source is explicitly derived where 
both ON and O F F  periods are exponentially distributed. Let hore(0) denote the ALMGF 
of the original traffic, which is generated by an ON-OFF source. /lorg(@) is given as 
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For further details, the readers are referred to [g]. 
In [g], the ALMGF of the output from the regulator for an ON-OFF source has been 

derived. The output process from the regulator with leaky bucket is modulated by the 
bivariate process {(W(t), J ( t ) ) ;  t > O} according to (4.8). Let W(0) = 0 and J(0)  = 1 (see 
Fig.2). Then, {(W(t), J ( t ) ) ;  t > O} is a regenerative process that regenerates whenever it 
reaches the state (0, 1). We define ON period U as 

Then .the cycle time of the regenerative process is U + D where D is the OFF period and 
exponentially distributed with rate f3 (see Fig. 2). 

Since the token pool is full at  time 0 and U, the total amount of tokens removed from 
the pool over [o? U] is equal to the amount of tokens entering the pool during [O, U]. This 
means that the total output during U is given by rU. On the other hand, the total output 
during D is zero. Hence, the total output during the first regenerative cycle is rU. Thus, the 
output from the regulator with the leaky bucket can be considered as an ON-OFF source 
with U as ON time, D as OFF time and r as the arrival rate at  ON time. 

As for the U, which is identical with the busy period of this system, [l01 analyzed the 
first passage times in fluid models and they derived the explicit expression of U*(s), the 
LST of U for the ON-OFF source. From the results of [10], we obtain 

where 

and 
6 = (A  - 2r)s + (A - r)/? - ra. 

Let hree(0) denote the ALMGF of the output from the regulator. Using the expression 
of U*(S) and horg(Q), we obtain 

where 

h e g  (0) = { 253 

Remarks. 1. As we stated, the ALMGF can be computed if the considered process is the 
Markov regenerative process. However, the output process of the regulator with Markov 
regenerative input is not regenerative in general. The ON-OFF process considered here 
is the exceptional case under which we can obtain the ALMGF of the regulated traffic 
explicitly. 
2. The ALMGF of the output of the regulator with leaky bucket is identical to that of the 
output from the fluid queue with output rate r .  From (5.6), we can see that the ALMGF of 
the output of the regulator is independent of M, the size of token pool. As [g] mentioned, 
this means that M does not play any role as far as reducing the effective bandwidth, but 
it acts strictly as a policing device that prevents arbitrarily large peak-rate bursts from 
entering the network. 
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5.2. Loss Probability of the System with K Input Sources 
In this section, we consider the loss probability of the buffer with the K independent 

input sources regulated by leaky bucket. 
Since we assume that  K sources are independent, from [2], we can derive the ALMGF 

of the total amount of K sources as the sum of K ALMGFs, i.e., h(0) = K .  hw(0). 
Now we solve h($)/$ = C with respect t o  0. Since C = KC, we solve hrcg(0)/O = c, i.e., 

From (5.4), (5.7) and the assumptions in Section 4 tha t  /?A/(a + ,B) < r < A and c < A, we 
obtain 

(5.8) 

@A < c <  c*, 
& + P  

where c* is the value of the effective bandwidth a t  0 = C, i.e., 

/3r - Ja/3r(A - r )  
c* = a* (C) = A 

(a+f3)r-a\ 

Using O* in (5.8), we can compute the second part of the CDE method, the loss proba- 
bility of the system with the large buffer using the following 

Finally, we obtain the following expression of G(B) ,  the loss probability for the multiplexing 
system with the large number of sources and the large buffer as 

Remarks. 1. As we noted in subsection 5.1, the ALMGF of the regulated traffic is 
independent of M and hence it is hard to investigate the loss probability with the leaky 
bucket parameter in the context of the standard effective bandwidth approach. Though 
(5.11) is the expression approximated by the CDE method, (5.11) includes the M and r, 
the parameters of the leaky bucket. Hence, this result can be considered as useful for 
designing the input source regulator with the leaky bucket. 
2. In Fig. 3, we show the r-c region where 0' exists. When (r,  c) is in the region ( l ) ,  0* is 
given by the first formula in (5.8). When (r,  c) is in the region (2), 0" is given by the second 
formula. 

6. Numerical Examples 
In this section, we show some numerical examples of the approximation by the CDE 

method. We set the parameters of the ON-OFF source as follows; 

We set the parameters of the multiplexer as follows; 
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Figure 3: r-c Region Where O* Exists. 

Changing the parameters of the regulator (M, r) where r satisfies the conditions of (5.8) 
and BA/(a + /?) < r < A (see Fig. 3)) we compute the logarithm of the loss probability 
of (5.11). We compare the loss probabilities calculated by the CDE method with ezB,  the 
approximation by the standard effective bandwidth (SEB) method. 

Tables 1 and 2 show the logarithms of the loss probabilities under SEB and CDE methods 
changing the token generation rate r .  In these tables, we set p = 0.6 and computed A from 
(4.4) changing r. In Table 1, we set c = 0.5 and in Table 2, c = 0.6. As for the CDE 
method, we calculated the loss probabilities under M = 0 and 1. 

Table 1: Logarithms of Loss Probability: c = 0.5 

In both tables, we observe that the loss probability becomes large as r getting large 
under both SEB and CDE methods. We can see that the value of r significantly affects the 
loss probability. This considerable variation is due to the number of sources, K. Even when 
the variation of r for each source is small, the aggregated traffic largely affects the buffer 
behavior of the multiplexer with the contribution of the K th  power order (see (5.11)). 
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Table 2: Logarithms of Loss Probability: c = 0.6 

We also observe that  the CDE method gives lower values than SEB. In addition, we 
observe that  the loss probability under M = 0.0 is smaller than that  under M = 1.0. 
However, M does not improve the loss probability as well as r does. 

r 

0.92 
0.93 

SEB 

-12.5957 
-10.8312 

Table 3: Loss Probability: Approximations and Simulation 

To validate the accuracy of the CDE method, the simulation was performed. In the 
simulation, we set p = 0.6 and c = 0.5. In Table 3, we compare the loss probabilities of 
SEB and CDE with the simulation results. From this table, the loss probability calculated 
by CDE is similar to  that of SEB, while both probabilities are larger than the simulation 
result. This is because both b and K are not sufficiently large for applying SEB and CDE 
methods. However, we can observe that the loss probability of CDE becomes large when 
M is getting large, as is the case of the simulation. Hence the CDE method can capture 
the variation due to  M more likely than SEB. Note that  the CDE method gives the upper 
bounds of the loss probability in this table. 

Fig. 4 shows the logarithms of the loss probabilities under SEB and CDE methods 
changing the token pool size M .  In this figure, we set p = 0.7, r = 0.68 and c = 0.5. Since 
the SEB method does not include M ,  the loss probability under the SEB method takes the 
constant value. We observe that the loss probability becomes large as M getting large, and 
tha t  the loss probability is increasing gradually when M > 0.5. 

The token pool acts strictly as a policing device that  prevents arbitrarily large peak- 
rate bursts from entering the network. Thus, setting M < c prevents the system from 
instantaneous increasing of the buffer contents of the multiplexer. Since c = 0.5, M improves 
the loss probability when M < 0.5. On the other hand, M larger than c does not improve 
the loss probability. 

M=0.0 
r 

0.80 
0.81 
0.82 

CDE(M = 0.0) 

-12.6534 
-10.8743 

M=1.0 

CDE(M = 1.0) 

-12.6226 
-10.8515 

SEE 
8.571 X 1 0 - ~  
7.844 X 10W3 
6.601 X 10-~  

CDE 
8.459 X 1 0 - ~  
7.794 X 1 0 - ~  
6.588 X 1 0 - ~  

Simulation 
(5.716 Â 0.410) X 10-4 
(6.178 Â 0.244) X 1om3 
(5.826 Â 0.133) X 1 0 - ~  

CDE 
8.520 X 1 0 - ~  
7.821 X 10-~  
6.595 X 10-' 

Simulation 
(6.085 & 0.350) X 10-~ 
(6.429 4Z 0.227) X 10-~ 
(5.962 4Z 0.113) X 10-~ 
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Figure 4: Logarithms of Loss Probability versus Token Pool Size 

As we stated, r drastically improve the loss probability, while M does not improve the 
loss probability so much. From the view point of the improvement of the loss probability, 
adjusting the value of r is more effective than changing M. 

7. Conclusion 
In this paper, we considered the loss probability of the multiplexing system with the large 

buffer and the large number of homogeneous ON-OFF sources. Using the CDE method, we 
derived the approximation of the buffer overflow probability. From the numerical results, 
we observed that r drastically improve the loss probability, while M does not improve the 
loss probability so much. 

In our analysis, we assumed that the input sources are homogeneous and that the process 
of the output rate of the regulator is Markovian for applying the CDE method. Although 
those assumptions should be relaxed, our results derived in this paper provides one of the 
significant indications for designing the input source regulator with the leaky bucket. 
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