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Abstract The worst-case performance of an ATM multiplexer, in which each multiplexed connection 
sends cells so as to conform to a generic cell-rate algorithm (GCRA), has been examined. Specifically, 
the concept of large-deviation ordering is introduced to find the "worst" cell-arrival process, i.e., the one 
yielding the worst performance of the ATM multiplexer. Several interesting results were obtained. First, 
the cell-loss ratio (CLR) of a bufferless model does not always give the worst CLR when the buffer size per 
connection is less than c/M, where c is the capacity of the outgoing link per connection, and M is the peak 
rate of the connection. Second, the cell-delay variation tolerance does not affect the worst-case performance 
if the buffer size is sufficiently large. Finally, theoretical support was derived for Yamanaka's conjecture 
that the greedy on-off pattern is not always the worst cell-arrival pattern among those conforming to the 
dual GCRAs. 

1. Introduction 
The broadband integrated services digital network is to be based on the asynchronous 

transfer mode (ATM), whereby information is transmitted in the form of fixed-sized packets 
called ATM cells. Users of constant or variable bit-rate connections share the switching 
and transmission facilities by coding and segmenting their information into cell payloads 
and transmitting them as cell streams; these streams are multiplexed, switched, and routed 
through the ATM network. The high transmission speed of ATM makes propagation delays 
consequential, making it difficult to design an effective reactive control mechanism. In ATM 
networks, therefore, preventive traffic controls are mainly used to keep the quality of service 
at a satisfactory level. 

We will first briefly summarize the preventive traffic controls in ATM networks. At 
connection setup, the user specifies both the quality-of-service (QoS) requirements and, 
using a source traffic descriptor, the anticipated traffic characteristics of the connection. 
Network resources for the connection are then assigned on the basis of the source traffic 
descriptor values and the QoS requirements. If there are not enough resources available, the 
connection is rejected. If the connection is accepted, the actual traffic characteristics are 
checked for conformity with the values specified at connection setup by monitoring the cell 
stream. If the characteristics do not conform, a penalty is imposed on the connection, e.g., 
some cells from the connection may be discarded. The first of these procedures, at connection 
setup, is called connection admission control, and the procedure after connection setup is 
called usage parameter control (UPC) . 

A source traffic descriptor is a set of traffic parameters, including the peak cell rate 
(PCR), the sustainable cell rate (SCR), the cell-delay variation tolerance (CDVT), and the 
burst tolerance (BT) . Conformance to these parameters is algorit hrnically defined in terms 
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of a generic cell-rate algorithm (GCRA) [l], which is a kind of leaky bucket algorithm. In 
this algorithm, whether each cell conforms to specified peak cell rate M and to cell-delay 
variation tolerance Tc is determined as follows [l4]. Let {ak} denote the set of observed cell- 
arrival times and {cA,} denote a set of theoretical cell-arrival times; yk (= ck  - ak) represents 
the variation in cell delay affecting the kth cell. A cell conforms to the pair (M, TJ if and 
only if yk < Tc, when the sequence {ck} is computed as follows: 

The GCRA specified by the pair (M, Tc) physically corresponds to the leaky bucket al- 
gorithm whose leak rate is M and bucket size is IMTJ (Fig. l). The conformance to a 
specified SCR and BT is defined in the same manner. 

cell-arrival process / 

Fig. 1. GCR.A parameters and leak bucket. 

As well as defining conformance, the GCRA is used in the UPC function, which sits 
on the network side of the user network interface before the first ATM switching or multi- 
plexing function in the network. There is a wide variety of traffic patterns that conform to 
the source traffic descriptor, and the network needs to accept all of these patterns without 
violating the QoS guarantees. Thus, to design traffic-control and traffic-management pro- 
cedures, we need to know the worst-case traffic among those conforming to the GCRA. The 
general belief is that greedy on-off patterns, which cyclically send cells at full speed until 
the bucket is full and then go silent until it leaks empty again (Fig. 2), are the worst case. 
This conjecture is intuitive but unproved. Yamanaka et  al. f23] reported a counterexample 
based on simulation; they claim another class of sources (depicted in Fig. 3) represents even 
worse traffic. However, they considered only a single conforming source, not multiplexed 
sources. Doshi [8] also investigated this problem and suggested that the worst-case pat tern 
may depend on the source mix (heterogeneous or homogeneous), the characteristics of the 
multiplexer (buffered or unbuffered), etc. Mitra et al. [l l ]  considered the resource alloca- 
tion strategy for the ATM network, assuming that the greedy on-off pattern is the worst 
pattern without conclusive proof. Among cell-arrival patterns conforming to the GCRA, 
Lee [l71 found the pattern that maximizes the average waiting time. However, more im- 
portant QoS factors, for example, the cell-loss ratio (CLR) or X-percentile delay, were not 
discussed. Shioda et al. [20] discussed the worst-case performance of a multiplexer for 
connections conforming to a pair of PCR and CDVT and derived the upper bound of the 
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CLR. Tsuchiya e t  al. [22] extended Shioda's result to derive the upper bound of the CLR 
when the connections conforming to the PCR, SCR, and BT are multiplexed. This upper 
bound, which was derived in the long-range-correlation limit, overestimates the actual CLR 
because it essentially neglects the cell-buffering effect. 

leaky bucket leaky bucket leaky bucket leaky bucket 
is empty is full is empty is full 

Fig. 2. Greedy on-off pattern. 

leaky bucket leaky bucket 
is empty is full 

leaky bucket leaky bucket 
is empty is full 

Fig. 3. Yamanaka's conjecture: worst cell-arrival pattern. 

In this paper, we provide a theoretical framework for finding the worst-case pattern by 
using large-deviation analysis. One important measure of QoS is the CLR, which should 
usually be very small, typically of the order of 1 0 6  to 1 0 .  Large-deviation analysis is 
a very powerful tool for handling such a rare event as cell loss in this situation, and the 
application of large-deviation techniques to ATM traffic control has been extensively studied 
[4, 5, 9, 10, 12, 13, 16, 241. 

In particular, large-deviation analysis explains well the asymptotics of queue-length dis- 
tributions in the regime of large buffers. The asymptotics in the large-buffer regime are, how- 
ever, of no use in analyzing the performance of the multiplexer under the GCRA-conforming 
arrival process because the number of cells arriving from such a process is always bounded 
from above, and the queue length is also bounded. Instead, in the case where the L-fold 
superposition of GCRA-conforming connections is multiplexed, we analyze the asymptotic 
behavior of queue-length distributions as L -+ oo. This is reasonable because the number of 
connections multiplexed on an outgoing link of a multiplexer may be of the order 1 O 2  - 1 O3 
due to the large capacity of the outgoing link (150-600 Mbps). 

Let Q be the number of cells (more precisely, workload) in the buffer at an ATM 
multiplexer shared by L identical independent connections (Fig. 4). The buffer is served at 
constant rate Lc, and the buffer size is LK. As shown in Sec. 2, the large L asymptotic for 
the queue-lengt h distribution yields 

1 
- log P [ Q ~  >LK\ = - inf It (K + c t )  , 

L+oo L t>0 
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or less formally we have 

(1.3) CLR E f3exp{-Linf t>o It(K + et)}. 

Here, It(-) is the rate funciton of an individual source defined by 

/((X) = sup[0x - log ^eeA t ] ] ,  
e 

where At is the number of cells arriving during [O, t) .  Equation (1.2) implies that the rate 
function can be used to compare of cell-arrival processes. That is, cell-arrival process if> can 
be said to be worse than d> when 

inf  it(^ + et\y) < inf + ctI$), 
t>0 t>0 

where It(-\y) denotes the rate function of cell-arrival process p. We call this ordering 
criterion large-deviation ordering. It gives the ordering of the system performance in the 
limit of large L when the system is scaled using L. (A similar concept was introduced in 
Ref. [3] for the discussion of negligible CDV.) In this paper we focus on finding the worst 
cell-arrival process in the sense of large-deviation ordering. 

--+- 
outgoing link 

L identical 
independent 
connections 

multiplexer 

Fig. 4. ATM multiplexer. 

This paper is organized as follows. We begin in Sec. 2 by briefly summarizing the large L 
(number of mult iplexed connections) asymptotics of queue-lengt h distributions. Then, based 
on these asymptotics, we introduce the concept of large-deviation ordering for comparing 
cell-arrival processes. The worst arrival process in the sense of large-deviation ordering 
is also derived for "bounded arrival processes", which are very general point processes, 
including GCRA-conforming arrival processes. In Sec. 3, we use the results obtained in 
Sec. 2 to derive the worst arrival process among all GCRA-conforming arrival processes. 
These results are used in Sec. 4 to discuss the worst-case performance of a multiplexer 
in three cases: (i) CDVT = 0 and BT = m, (ii) CDVT > 0 and BT = m, and (iii) 
CDVT = 0 and BT < m. We show a few numerical examples in Sec. 5 to numerically 
illustrate the results derived in Sec. 4. Finally, we conclude in Sec. 6 with a discussion of 
some unsolved problems. 

2. Worst bounded cell-arrival process 
2.1 Large L asymptotics of cell-loss ratio 

As a preliminary, we will briefly summarize the CLR asymptotics in the regime of a 
large number of multiplexed connections [4]. Assume that L identical independent cell- 
arrival processes share a multiplexer. The multiplexer is served by a fixed-rate channel with 
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a capacity of Lc cells in unit time. Cells that cannot be immediately transmitted on the 
outgoing channel are queued in a buffer of size LK. Excess cells arriving at a full buffer are 
considered lost. 

Let QL denote the workload remaining in the multiplexer at t = 0. (Here, the workload 
is normalized by the service time of one cell. Thus, the integer part of QL can be considered 
to be the number of cells in the buffer.) By the Lindley equation, we have [4] 

where A; is the number of cells arriving during [-t, 0) from L cell arrival processes. It was 
shown in Ref. [4] that if point process At satisfies the large-deviation principle, 

(2.2) lim L-I log P [QL 2 Lft] = lim L - ~  log P [sup(Af - cLt) 2 Lft] 
L+m L+w t>0 

A: = sup lim L '  log P[- 2 K + ct] = - inf It(& + ct), 
t>o L+m L t>o 

where 
(2.3) UK + ct) sup{O(~ + ct) - log ~ [ e ' ~ ' ] } .  

0 

The function It(x) is considered to be a time-dependent rate function of the individual-cell- 
arrival process. Thus, we approximately have 

(2-4) CLIR E P[QL KL] E ,flexp{-Linf t>o It(& + ct)}. 

Remark: It is easy to see that a stronger limit than Eq. (2.2) holds. Let At(^) = log E[eUt], 
and 0; be the solution of the equation K + ct = A x e ) .  We first note that the Bahadur and 
Rao theorem ([7] Theorem 3.7.4, [15]) gives for t > 0 

where f (L) g(L) means that f (L)/g(L) -+ 1 as L -+ m. Because t is arbitrary, we have 

Thus, we obtain the following lower bound for the large L asymptotics of the workload 
distribution: l 

P [ Q ~  2 LK] > 1 
exp{- L inf It (K + ct)}, 

0;JSLAVS') t>0 
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2.2 Large-deviation ordering 
The cell-loss ration asymptotics (2.4) naturally suggest the notion of large-deviation 

ordering, which is defined as follows. 

Definition 2.1 Let y and (b be two cell-arrival processes. We say that p is worse than 4> 
in the sense of large-deviation ordering if 

inf  it(^ + ct\y) < inf  it(^ + ctI(b), 
t>0 t>0 

where &(-l+) denotes the rate function of cell-arrival process 4 .  This is denoted as y <LD 4. 
In the following, we investigate the worst arrival pattern in the sense of large-deviation 
ordering among all "bounded" cell-arrival input S. Here, "bounded" means that the number 
of cells arriving during an interval of length t is essentially bounded by some positive value 

with probability 1. Let H(A) denote the set of all stationary and ergodic cell-arrival 
processes satisfying given constraint A. The worst arrival process under A-worst in the 
sense of large-deviation order inpis  defined as follows: 

Definition 2.2 Cell-arrival process y G WA} is said to be the worst in the sense of large 
deviation ordering if\p <LD + for every (b G H(A). 

In the following, we specifically consider the worst cell-arrival process under the following 
'bounded" constraint: 

where 
(2.10) 

Lemma 2.1 If cell arrival process 4 satisfies the constraint A given b y  Eq. (2.9), then 

C m ,  at ~ [ e ~ * t ] < -  + ( I - - ) ,  
mt mt 

4 where At denotes the number of cells arriving during [-t, 0) from cell-arrival process 4. 
Proof Let PS) and p?(k) be the distribution and density functions of A?, respectively. 
Consider an associated cell-arrival process, whose distribution and density functions, 
N k )  and pf(k), are given by 

where 

(2.13) 

K = m + ,  otherwise, 

00 

a! = kpf (k), and mf = max{k lpf (k) > O}. 
k=O 

We define 
(2.14) k k  = &{k~Pf(k) > 1 - a$/mf}. 

Observe that ~f and ~f satisfy the cut criterion of distribution [21] because 
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It was shown ( [21]  Proposition 1.5.1) that random variables X and Y satisfying the cut 
criterion of distribution have X Y ,  where Sex denotes convex ordering. Hence, A! Lea 
A?, and thus 

where we use the fact that ex is an increasing convex function. Because the final expression 
dJ of Eq. (2.16) is increasing for at and m?, it follows from the definition of S l ( A )  that 

This completes the proof. 

The following statement is the consequence of Lemma 2.1. 

Theorem 2.1 If cell arrival process d> satisfies the constraint A given by Eq. (2.9),  then 

where 

(2.19) def X X X 1 - x / m t  
I ( x  \mt, a t )  = - log - + ( 1  - -) log 

mt at mt 1 - a t / m t W  

Proof Substituting Eq. (2.11) into Eq. (2.3),  we have 

This completes the proof. D 

Let !PT E W4 be the cell-arrival process whose density function p 3 k )  satisfies the 
following at t = T :  

( I T / ~ T  k = HIT ,  

(2.21) p F T ( k )  = { 1 W aT,mT k = 0 ,  
0 otherwise. 

Corollary 2.1 Cell-arrival process !PT is  the worst i n  fl(A) i n  the sense of large-deviation 
ordering if for any t ,  
(2.22) f ( K  + cT\in.~,  Ã ‡ T  < + ct lmt ,  a t ) .  

Proof It i seasy tosee tha t  I T ( ~ + c T l % )  = f ( n + c T 1 m T , a T ) .  T h u s 7 f o r a l l 4 > â ‚ ¬ ~  

and therefore !PT <̂ D ^>- 
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3. Worst case performance with GCRA-conforming arrival processes: general 
framework 

Here, we examine the cell arrival processes that conform to the set of four traffic pa- 
rameters: peak cell rate M, cell-delay variation tolerance Tc, sustainable cell rate A, and 
burst tolerance Tb. The conformance definitions of these four parameters are given in terms 
of the GCRA, as explained in Sec. 1. The cell-arrival processes conforming to these traffic 
parameters are bounded cell-arrival processes and satisfy the following constraint: 

where a A b = min{a, b}. Conforming to these four parameters is equivalent to conforming 
to dual GCRAs: the first-stage GCRA is specified by the pair (M, Tc), and the second-stage 
GCRA is specified by the pair (A, Tb) (Fig. 5). It was shown in Ref. [20] that the number 
of cells arriving during a period of length t from a cell-arrival process conforming to the 
pair (M, Tc) is bounded by 1 + \(t  + Tc)MJ . Similarly, the number of cells arriving during 
a period of length t from the cell-arrival process conforming to the pair (A, Tb) is bounded 
by 1 + 1(t + Tb)A]. Thus, 

Another condition, E[At] < At, is the direct consequence of the definition of the sustainable 
cell rate (the SCR is the upper bound of the average cell rate). 

cell-arrival process , cell 

M T J  : bucket size 1 

4'7 A : leak rate 

Fig. 5. Dual GCRAs. 

Let !VscRA be the cell-arrival process whose density function p;TcRA (k) satisfies the 
following at t = T: 

A T / ~ F ~ ~ ~  k = m m  GCRA , 
(3-3) PT 

otherwise. 
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Lemma 3.1 If cell-arrival process cf) satisfies the constraint AGCRA, then 

(3.4) IT(K + cT\4>) 2 IT(K + c ~ l p )  > f (PT, tfr), 

where 

1-0 K + cT AT 
7 qT = mooRA 7 PT = GCRA a T m~ 

Proof It follows from Theorem 2.1 that for every <f) G ^{AGCRA) 

(3.6) IT (K + cT\cf)) 2 / (K + CT l m y R A ,  AT) 

It is easy to see that /(K + C T ] @ $ ~ " ~ )  = f (pT, qr). 

The following is the GCRA-conforming arrival-process 

Lemma 3.2 Cell-arrival process is the worst in 
deviation ordering if f (pT, qT) 5 f (pt, qt) for any t .  

Proof For any cf) G ^{AGCRA), 

(3.7) infI t (~+ct lcf))  t>o 2 Mf(pt ,gt)  = f ( p ~ , < t r )  = 

2 inf UK + ctl@FcRA). 
t>0 

Thus, f^ SLD cf). 

version of Corollary 2.1. 

O(AGCRA) in the sense of large- 

Note that the stability condition of the queue requires c < A, and therefore qt > pt. 
Also note that no cells are lost when qt 1 because qt 1 implies K + ct 2 mFcRA. Thus, 
f (pt, qt) should be infinite for qt > 1 due to the physical meaning of the rate function. The 
following lemma will be used in the rest of this paper. 

Lemma 3.3 If a Q <_ 1, then f(a,0} is an increasing function of P and a decreasing 
function of a. 

Proof: Observe that 

which completes the proof. 

Lemma 3.2 implies that the worst cell-arrival process exists in the uncountable set 
{@FCRA}. In the following, to simplify the discussion, we focus on finding the worst arrival 
process in the countable set {@EcRA}^,, (c {@FcRA}), where t i  , t2, (Fig. 6) are defined 

by 

(3.9) 
def . n - 1  n - 1  

tn = inf{t 1 mFcRA = n} = {- - 
M TJV{-- Tb} v 0, 

where a V b = max{n, b}. In this setting, @F g eRA is the worst in a{AocRA) in the 
sense of large-deviation ordering if 
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t l  (3  (4 t5 t 6 t7  h 
h 
Fig. 6. Discrete time axis (for CDVT > 0). 

where 

Remark: @FRA is not always the worst process of the original problem; the worst process 
of the original problem GcRA is not in {@F}% if T is not in the set {tn}>. We can 
determine, however, the lower and upper bounds of the rate function IT(K + CT [@gcRA) for 
any T .  In fact, for t G (tn, 

It thus follows from Lemma 3.3 that for T 6 ( i n 7  tn+l)-, 

This enables us to estimate the worst case performance of a multiplexer based only on the 
results on the discrete time axis {tn}?=!. 

4. Case study 
4.1 Case 1: CDVT = 0 and BT = oo 

First, we examine the simplest case where Tc = 0 and Tb = m. The condition Tf, = m 
means that a cell-arrival process is not policed at the second-stage GCRA. (The average 
cell rate of an individual cell stream is, however, assumed to be bounded by A.) Under this 
condition, 

A: When K >_ c / M ,  pn is increasing and qn is decreasing for all n >. 1. In addition, 
Pn < qn for all n 2 1 by the stability condition of the queue. Thus, we can apply Lemma 
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3.3 for qn < 1 to obtain 

For qn > 1, f (pn, qn) = oo, so the above is satisfied for all n > 1. Thus, it follows from 
Lemmas 3.1 and 3.2 that !PECRA is the worst in the sense of large-deviation ordering, and 

GCRA A c 
i n f I t ( ~ + c t l $ ) > i n f I t ( ~ + c t \ ! P m  t>o ) =  f(,.,,.). 

t>0 

Remark: Eq. (2.7) gives 

where 

(4.5) OYA"(0') = lim O;2~t(rnFcRA - At) 
t+m 

A A c 1 - c/M 
= -(l - -)(log - - log 

M M A 1 - AIM 12.  
Observe that Stirling's formula gives for large L 

We therefore approximately have for large L 

The final exression is the same as the CLR of the bufferless model [S, 12, 191, which is widely 
believed to be the worst CLR when B T is infinite. 

B: When K < c/M (< l), !PEcRA is not always the worst because pn and qn are both 
increasing for all n > 1. In other words, the bufferless model may not give the worst 
performance when the buffer size per connection is smaller than c/M. A similar conclusion 
was reached by Saito [l81 from a different approach. 

Remark: Even in this case, we can obtain the lower bound of the rate function of the worst 
cell-arrival process. We define 
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Because Ono > K/no, we finally have 

4.2 Case 2: CDVT > 0 and BT = oo 

Next, we examine the case where Tc > 0 and Tb = m ,  under which we have 

The following discussion is analogous to that in Sec. 4.1. 

A: When K > c/M + cTc, pn is an increasing and qn is a decreasing function for n > 1. It 
follows from Lemmas 3.1, 3.2, and 3.3 that '̂ SZCRA is the worst in the sense of large-deviation 
ordering, and 

GCRA A c 
inf I,(K + ct\4>) > inf I,(K + c t I G  ) = f (-^-, -^). 
t>0 t>0 

This result points out a non-intuitive interesting fact: When K > c/M + cTc, the worst 
process is given by '̂ SFRA, whose rate function f (6,  G) does not depend on Tc. That is, 
under the condition K > c/M + cTc (i.e., we have a large buffer), the CDVT is negligible for 
the worst-case performance. 
B: When K < c/M+cTo we can obtain the lower bound of the rate function even though we 
cannot definitely identify the worst cell-arrival process. Observe that pn = 0 and qn = K/n 
for n < nl ,  and pn and qn are both increasing for n > nl ,  where 

We define 

(4.14) no = min{n 1 qn > A/M = 
c( l  + TcM) - KM 

[ c - A  

where the last equality is derived from the fact f (0, /c/(nl - 1)) = m .  Because qnl > /^Inl, 
we have 

If nl < no, we obtain 
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4.3 Case 3: CDVT = 0 and BT < oo 
Finally, we examine the case where Tc = 0 and Tb < oo. Although this case has 

been extensively studied [8, 17, 22, 231, no conclusive answer has been reached. Under the 
condition considered here, 

Note that pn is increasing for all n 1. 

A: When c/M < CIA + cTb < K,  qn > 1 because qn is decreasing for n and qoo = 1. Thus, 
f(pn,qn) = for all n > 1. In fact, 

which implies no cells are lost. 

B: When c/M < K < c/A + cTb, qn is decreasing for 1 < n < n2 and increasing for n > n2, 
where 

def C 1 C  C 1 C  (4.20) n2 = max{n 1 - - -(- - K )  2 - - -(- + cTb - K)} = 1 + 1 M ATb 

M n M  A n A  M - A  l 
Thus, it follows from Lemma 3.2 that 

Note that n2 is the maximum number of cells sent in a "burst" at peak rate M; this is 
usually referred to as the maximum burst size (MBS) [2]. If we have 

I?::'" is the worst in the sense of large-deviation ordering. The number of cells from I?::'" 
GCRA in any interval of length tn2 = n2/M is equal to the MBS (= n2) or 0, so in this sense !Pn2 

corresponds to the greedy on-off source. Conversely, if we have 

is the worst in the sense of large-deviation ordering. Because cell-arrival process 
is not the greedy on-ofi pattern, this supports Yarnanaka's conjecture. In the fol- -Â¥-n 

lowing, the derivative of f (pn, qn) by n for n > n2 is further calculated. First observe that 
for n > n2 

Thus, 

1 c 1 c  
pn = 1 - -(l + ATb), and qn = - - -(- + cTt - K). 

n A n A  

= log qn(l - pn) On - Pn 
Aqn - 

pn(1 - qn) 
Apn 

pn(1 - pn) 
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where 
(4.26) 

Further, consider the following Taylor expansion: 

(4.27) log 9n(l - pn) qn - Pn 

pn(^ - qn) pn(l - qn) 

It is used to obtain 

If the second and higher-order terms of the expansion on the right side of Eq. (4.28) are 
neglected, we obtain 

and thus 
(4.30) f ( ~ n ,  qn) 2 f (pn2, qn2) A f (pn2+1, qn2+1) E f (pn2, qnJ. 

(In fact, g(pn, qn) = o(n-l), and thus, for large n, g(pn, qn) Ã 1.) This suggests that the 
general belief-that the greedy on-off pattern is the worst-is correct. We do not, however, 
obtain that conclusion if we consider the higher-order terms on the right side of Eq. (4.28). 
In particular, when A E c, the greedy on-off source is not the worst pattern, as we could 
anticipate from Eq. (4.28). 

C :  When K. < c/M < c/A + cTb, pn and qn are both increasing for all n > l .  In this case, 
we have 

5. Numerical examples 
For the cell-arrival processes conforming to dual GCRAs, we numerically found the set 

of parameter values under which the greedy on-off pattern becomes the worst in the sense of 
large-deviation ordering. The same condition as Case 3 in Sec. 4 was assumed-that is, the 
cell-delay variation tolerance of each cell-arrival process was 0. The capacity of the outgoing 
link per connection c was assumed to be 2 Mbps. 

Figures 7(a)-(d) illustrate the region where the greedy on-off pattern is the worst on the 
PCR-SCR map for four different buffer sizes per connection. The burst tolerance was set 
to 1 ms. These figures show that 

1. Regions where the greedy on-off pattern is not the worst exist and, in this sense, Ya- 
manaka's conjecture is confirmed. 
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Fig. 7. Region where greedy on-off source is the worst when BT = 1 ms. 

When SCR < c, the greedy on-off source is the worst regardless of the PCR and of the 
buffer size per connection. In contrast, when SCR P c ,  the greedy on-off pattern is not 
the worst. 
When PCR P c ,  the greedy on-off source is the worst regardless of the SCR and of the 
buffer size per connection. As the PCR becomes larger (compared with c), however, the 
region where the greedy on-off pattern is the worst becomes smaller. 

Ethernet LAN traffic is quite bursty and thus its average rate is much smaller than the 
capacity assigned to the connection. Therefore, for connect ions dedicated to such traffic, 
we can regard the greedy on-off source as the worst. For connections dedicated to voice or 
video traffic, however, resource assignment based on the assumption that the greedy on-off 
source is the worst might lead to QoS degradation. 

Figures 8(a)-(d) illustrate the region where the greedy on-off pattern is the worst on the 
PCR-SCR map when the burst tolerance is set to 10 ms. The same tendencies are observed 
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Fig. 8. Region where greedy on-off source is the worst when BT = 10 ms. 

as in Figs. 7(a)-(d). Furthermore, compared with Figs. 7(a)-(d), Figs. 8(a)-(d) show that 
as the burst tolerance becomes larger, the regions where the greedy on-off pattern is the 
worst become wider (except for the case shown in Fig. 8(d)). 

6. Conclusion 
We have examined the worst-case performance of an ATM multiplexer, in which each 

multiplexed connection sends cells so as to confirm to the generic cell rate algorithm. Specif- 
ically, we examined the case where a large number of connections share a multiplexer and 
discussed the worst cell-arrival process based on the concept of large-deviation ordering. We 
obtained several interesting results. First, the cell loss ratio of the bufferless model is not 
always the worst cell loss ratio in the multiplexer when the buffer size per connection is 
less than c/M, where c is the outgoing-link capacity per connection and M is the peak rate 
of the connection. Second, the cell-delay-variation tolerance does not affect the worst-case 
performance if the buffer size is sufficiently large. The implication of this is very useful 
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because it can simplify the worst-case-resource assignment, which is the most promising 
strategy for resource assignment in ATM networks. Finally, in the sense of large-deviation 
ordering, we derived theoretical support for Yamanaka's conjecture that the greedy on-off 
pattern is not always the worst. 

Compared with previous studies, this paper's approach has the major advantage of 
simplicity: in this framework, the worst-case performance is given by solving an optimization 
problem, such as minimizing the rate function. This approach is therefore very easy to 
handle and is expected to provide fruitful insights into the worst case. 

Finally, we discuss a possible extension of these results to the heterogeneous environ- 
ment. The heterogeneous version of Eq. (1.2) is given as follows: assume that there are Lj  
connections of type j, with L = L, connections in total. The arrival process from a type 
j connection is denoted as A , ^  Therefore, 

1 W L+ lim - ~ o ~ P [ Q ~  L > LK] = -inf{sup[6(~ t>0 ,g + ct) - x r j  log E[&'-]]}, 
j 

where 
r j  = lim Lj/L. 

L+m 

Equation (6.1) is still simple enough to analytically derive result S for wors t-case performance 
in a heterogeneous environment. Furthermore, Eq. (6.1) indicate that the worst cell-arrival 
process may depend on the source mix {rj}, which might make the resource allocation in 
the heterogeneous environment more complex. 
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